zbMATH — the first resource for mathematics

Subcritical regimes in some models of continuum percolation. (English) Zbl 1172.60335
Summary: We consider some continuum percolation models. We are mainly interested in giving some sufficient conditions for the absence of percolation. We give some general conditions and then focus on two examples. The first one is a multiscale percolation model based on the Boolean model. It was introduced by R. Meester and R. Roy [Contiunuum percolation. Reprint of the 1996 hardback ed. Cambridge: Cambridge University Press (2008; Zbl 1146.60076)] and subsequently studied by M. V. Menshikov, S. Yu. Popov and M. Vachkovskaia [Probab. Theory Relat. Fields 119, No. 2, 176–186 (2001; Zbl 1001.60104), Bull. Braz. Math. Soc. (N.S.) 34, No. 3, 417–435 (2003; Zbl 1056.60099)]. The second one is based on the stable marriage of Poisson and Lebesgue introduced by C. Hoffman, A. E. Holroyd and Y. Peres [Ann. Probab. 34, No. 4, 1241–1272 (2006; Zbl 1111.60008)] and whose percolation properties have been studied by M. V. Freire, S. Popov and M. Vachkovskaia [Stochastic Processes Appl. 117, No. 4, 514–525 (2007; Zbl 1130.60092)].

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
PDF BibTeX Cite
Full Text: DOI
[1] Freire, M. V., Popov, S. and Vachkovskaia, M. (2007). Percolation for the stable marriage of Poisson and Lebesgue. Stochastic Process. Appl. 117 514-525. · Zbl 1130.60092
[2] Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. Amer. Math. Monthly 69 9-15. JSTOR: · Zbl 0109.24403
[3] Gouéré, J.-B. (2008). Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36 1209-1220. · Zbl 1148.60077
[4] Grimmett, G. (1999). Percolation , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 321 . Springer, Berlin. · Zbl 0926.60004
[5] Hall, P. (1985). On continuum percolation. Ann. Probab. 13 1250-1266. · Zbl 0588.60096
[6] Hall, P. (1988). Introduction to the Theory of Coverage Processes . Wiley, New York. · Zbl 0659.60024
[7] Hoffman, C., Holroyd, A. E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 1241-1272. · Zbl 1111.60008
[8] Hoffman, C., Holroyd, A. E. and Peres, Y. (2008). Tail bounds for the stable marriage of Poisson and Lebesgue. Canad. J. Math. To appear. Available at · Zbl 1191.60015
[9] Kallenberg, O. (1986). Random Measures , 4th ed. Akademie-Verlag, Berlin. · Zbl 0345.60032
[10] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge Tracts in Mathematics 119 . Cambridge Univ. Press, Cambridge. · Zbl 0858.60092
[11] Meester, R., Roy, R. and Sarkar, A. (1994). Nonuniversality and continuity of the critical covered volume fraction in continuum percolation. J. Statist. Phys. 75 123-134. · Zbl 0828.60083
[12] Menshikov, M. V., Popov, S. Y. and Vachkovskaia, M. (2001). On the connectivity properties of the complementary set in fractal percolation models. Probab. Theory Related Fields 119 176-186. · Zbl 1001.60104
[13] Menshikov, M. V., Popov, S. Y. and Vachkovskaia, M. (2003). On a multiscale continuous percolation model with unbounded defects. Bull. Braz. Math. Soc. ( N.S. ) 34 417-435. · Zbl 1056.60099
[14] Menshikov, M. V. and Sidorenko, A. F. (1987). Coincidence of critical points in Poisson percolation models. Teor. Veroyatnost. i Primenen. 32 603-606. · Zbl 0661.60122
[15] Møller, J. (1994). Lectures on Random Voronoĭ Tessellations. Lecture Notes in Statistics 87 . Springer, New York. · Zbl 0812.60016
[16] Neveu, J. (1977). Processus ponctuels. In École D’Été de Probabilités de Saint-Flour , VI -1976. Lecture Notes in Math. 598 249-445. Springer, Berlin. · Zbl 0439.60044
[17] Zuev, S. A. and Sidorenko, A. F. (1985). Continuous models of percolation theory. I. Teoret. Mat. Fiz. 62 76-86.
[18] Zuev, S. A. and Sidorenko, A. F. (1985). Continuous models of percolation theory. II. Teoret. Mat. Fiz. 62 253-262.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.