×

Nonquantum gravity. (English) Zbl 1172.83314

Summary: One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a conjecture. At present there is no experimental evidence of the quantum nature of gravity and the likelihood of definitive tests in the future is not at all certain. If gravity is, indeed, a nonquantum phenomenon, then it is suggested that evidence will most likely appear at mesoscopic scales.

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Weyl, H.: Gravitation and electricity. Translated from Sitz. Preuss. Akad. Wissen. (1918) In: The Principle of Relativity, pp. 201–216 (1923). (Reprinted by Dover, New York (1952))
[2] Kaluza, T.: Zum unitstaetsproblem in der physik. Sitz.ber. Preuss. Akad. Wiss., 966–972 (1921) · JFM 48.1032.03
[3] Eddington, A.: The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1923). Chap. 7 · JFM 49.0658.10
[4] Green, M., Schwarz, J., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987) · Zbl 0619.53002
[5] Ashtekar, A., Rovelli, C.: Connections, loops and quantum general relativity. Class. Quantum Gravity 9, S3–S12 (1992) · Zbl 0747.53056 · doi:10.1088/0264-9381/9/S/001
[6] Moller, C.: Les Theories Relativistes de la Gravitation. In: Lichnerowicz, A., Tonnelat, M.-A. (eds.) Colloques Internationaux CNRS, vol. 91. CNRS, Paris (1962)
[7] Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963) · Zbl 0108.22301 · doi:10.1016/0029-5582(63)90279-7
[8] Carlip, S.: Is quantum gravity necessary? Class. Quantum Gravity 25, 154010 (2008) · Zbl 1145.83327 · doi:10.1088/0264-9381/25/15/154010
[9] Zurek, W.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003) · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[10] Hall, M., Reginatto, M.: Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109 (2005) · doi:10.1103/PhysRevA.72.062109
[11] Weinberg, S., Witten, E.: Limits on massless particles. Phys. Lett. B 96, 59–82 (1980) · doi:10.1016/0370-2693(80)90212-9
[12] Barceló, C., Visser, M., Liberati, S., Ahluwalia, D.: Einstein Gravity as an Emergent Phenomenon? Int. J. Mod. Phys. D 10, 799–806 (2001) · Zbl 1155.83332 · doi:10.1142/S0218271801001591
[13] Dyson, F.: The world on a string, review of The Fabric of the Cosmos: Space, Time, and the Texture of Reality by Brian Greene. New York Rev. Books 51(8) (2004)
[14] Rothman, T., Boughn, S.: Can gravitons be detected? Found. Phys. 36, 1801–1825 (2006) · Zbl 1117.83052 · doi:10.1007/s10701-006-9081-9
[15] Boughn, S., Rothman, T.: Aspects of graviton detection: graviton emission and absorption by atomic hydrogen. Class. Quantum Gravity 23, 5839–5852 (2006) · Zbl 1133.83326 · doi:10.1088/0264-9381/23/20/006
[16] Smolin, L.: On the intrinsic entropy of the gravitational field. Gen. Relativ. Gravit. 17, 417–437 (1985) · doi:10.1007/BF00761902
[17] Misner, C., Thorne, K., Wheeler, J.: Gravitation. Freeman, New York (1973). Chap. 37
[18] Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983) · doi:10.1086/161130
[19] Hackermuller, L., Uttenthaler, S., Hornberger, K., Reiger, E., Brezger, B., Zeilinger, A., Arndt, M.: Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003) · doi:10.1103/PhysRevLett.91.090408
[20] Lamine, B., Herve, R., Lambrecht, A., Reynaud, S.: Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006) · doi:10.1103/PhysRevLett.96.050405
[21] Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 8, 581–600 (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[22] Diosi, L.: Model for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 42, 1165–1174 (1989) · doi:10.1103/PhysRevA.40.1165
[23] Ghirardi, G., Grassi, R., Rimini, A.: Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990) · doi:10.1103/PhysRevA.42.1057
[24] Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981) · doi:10.1103/PhysRevD.24.1516
[25] Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005) · doi:10.1103/RevModPhys.76.1267
[26] Joos, E.: In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. In: Lecture Notes in Physics, No. 538, p. 14. Springer, New York (2000)
[27] Page, D., Geilker, C.: Indirect evidence for quantum gravity. Phys. Rev. Lett. 47, 979–982 (1981) · doi:10.1103/PhysRevLett.47.979
[28] Marshall, W., Simon, C., Penrose, R., Bouwneester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett 91, 130401 (2003) · doi:10.1103/PhysRevLett.91.130401
[29] Armour, A., Blencowe, M., Schwab, K.: Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002) · doi:10.1103/PhysRevLett.88.148301
[30] Myatt, C., : Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000) · doi:10.1038/35002001
[31] Hackermueller, L., Hornberger, K., Brezger, B., Zeilinger, A., Arndt, M.: Nature 427, 711–714 (2003) · doi:10.1038/nature02276
[32] Eppley, K., Hannah, E.: The necessity of quantizing the gravitational field. Found. Phys. 7, 51–68 (1977) · doi:10.1007/BF00715241
[33] Terno, D.: Inconsistency of quantum-classical dynamics. Found. Phys. 36, 102–111 (2006) · Zbl 1105.81004 · doi:10.1007/s10701-005-9007-y
[34] Caro, J., Salcedo, L.: Impediments to mixing classical and quantum dynamics. Phys. Rev. A 60, 842–852 (1999) · doi:10.1103/PhysRevA.60.842
[35] Peres, A., Terno, D.: Hybrid classical-quantum dynamics. Phys. Rev. A 63, 022101 (2001) · doi:10.1103/PhysRevA.63.022101
[36] Padmanabhan, T.: Is gravity an intrinsically quantum phenomenon? Mod. Phys. Lett. A 17, 1147–1158 (2002) · Zbl 1083.83519 · doi:10.1142/S0217732302007260
[37] Mattingly, J.: Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D 73, 064025 (2006) · doi:10.1103/PhysRevD.73.064025
[38] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[39] Albers, M., Kiefer, C., Reginatto, M.: Measurement analysis and quantum gravity. Phys. Rev. D 73, 064051 (2008) · doi:10.1103/PhysRevD.78.064051
[40] Schiff, L.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1968). Chap. 11 · Zbl 0068.40202
[41] Ford, L.: Gravitational radiation by quantum systems. Ann. Phys. 144, 238–248 (1982) · doi:10.1016/0003-4916(82)90115-4
[42] Pound, R., Rebka, G.: Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960) · doi:10.1103/PhysRevLett.4.337
[43] Salzman, P., Carlip, S.: A possible experimental test of quantized gravity. arXiv:gr-qc/0606120 (2006)
[44] van Wezel, J., Oosterkamp, T., Zaanen, J.: Towards an experimental test of gravity-induced quantum state reduction. Philos. Mag. 88, 1005–1026 (2008) · doi:10.1080/14786430801941824
[45] Stapp, H.: The Copenhagen interpretations. Am. J. Phys. 40, 1098–1116 (1972) · doi:10.1119/1.1986768
[46] Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[47] Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[48] Preskill, J.: Do black holes destroy information? arXiv:hep-th/9209058 (1992)
[49] Hawking, S.: Information loss in black holes. Phys. Rev. D 72, 0840013 (2005) · Zbl 1118.83010 · doi:10.1103/PhysRevD.72.084013
[50] Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09, 120 (2007) · doi:10.1088/1126-6708/2007/09/120
[51] Bahcall, N., Ostriker, J., Perlmutter, S., Steinhardt, P.: The cosmic triangle: Revealing the state of the universe. Science 284, 1481–1488 (1999) · doi:10.1126/science.284.5419.1481
[52] Kolb, E., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8, 322 (2006) · doi:10.1088/1367-2630/8/12/322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.