zbMATH — the first resource for mathematics

Cluster synchronization in a complex dynamical network with two nonidentical clusters. (English) Zbl 1172.93002
Summary: This paper further investigates cluster synchronization in a complex dynamical network with two clusters. Each cluster contains a number of identical dynamical systems, however, the sub-systems composing the two clusters can be different, i.e., the individual dynamical system in one cluster can differ from that in the other cluster. Complete synchronization within each cluster is possible only if each node from one cluster receives the same input from nodes in the other cluster. In this case, the stability condition of one-cluster synchronization is known to contain two terms: the first accounts for the contribution of the inner-cluster coupling structure while the second is simply an extra linear term, which can be deduced by the “same-input” condition. Applying the connection graph stability method, the authors obtain an upper bound of input strength for one cluster if the first account is known, by which the synchronizability of cluster can be scaled. For different clusters, there are different upper bounds of input strength by virtue of different dynamics and the corresponding cluster structure. Moreover, two illustrative examples are presented and the numerical simulations coincide with the theoretical analysis.

93A30 Mathematical modelling of systems (MSC2010)
94C15 Applications of graph theory to circuits and networks
Full Text: DOI
[1] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 1998, 393(4): 440–442. · Zbl 1368.05139
[2] A. L. Barabási and R. Albet, Emergence of scaling in random networks, Science, 1999, 286(15): 509–512. · Zbl 1226.05223
[3] M. E. J. Newman, Community structure in social and biological network, Proc. Natl. Acad. Sci., 2002, 99(12): 7821–7826. · Zbl 1114.91362
[4] P. Gleiser and L. Danon, Community structure in jazz, Advances in Complex Systems, 2003, 6(4): 565–573.
[5] G. W Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee, Self-organization and identification of Web communities, IEEE Computer, 2002, 35(3): 66–71.
[6] C. Hugenii, Horoloquim Oscilatorium, Apud F. Muguet, Parisiis, 1673.
[7] L. M. Pecora and T. L. Carroll, Master stability function for synchronized coupled systems, Phys. Rev. Lett., 1998, 80(10): 2109–2112.
[8] X. F. Wang and G. Chen, Synchronization in small-world dynamical networks, Int. J. Bifur. Chaos, 2002, 12(1): 187–192.
[9] J. Lü and G. Chen, A time-varying complex dynamical network models and its controlled synchronization criteria, IEEE Trans. Auto. Contr., 2005, 50(6): 841–846. · Zbl 1365.93406
[10] Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E, 2001, 63(2): 026211.
[11] V. N. Belykh, I. V. Belykh, and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E, 2001, 63(3): 036216.
[12] Y. C. Kouomou and P. Woafo, Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators, Phys. Rev. E, 2003, 67(4): 046205.
[13] Y. C. Kouomou and P. Woafo, Cluster synchronization in coupled chaotic semiconductor lasers and application to switching in chaos-secured communication networks, Optics Communications, 2003, 223(4–6): 273–282.
[14] S. Jalan, R. E. Amritkar, and C. K. Hu, Synchronized clusters in coupled map networks, I. Numerical studies, Phys. Rev. E, 2005, 72(1): 016211. · Zbl 1229.37018
[15] R. E. Amritkar, S. Jalan, and C. K. Hu, Synchronized clusters in coupled map networks, II. Stability analysis, Phys. Rev. E, 2005, 72(1): 016212. · Zbl 1229.37018
[16] I. V. Belykh, V. N. Belykh, K. V. Nevidin, and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos, 2003, 13(1): 165–178. · Zbl 1080.37525
[17] W. X. Qin and G. Chen, Coupling schemes for cluster synchronization in coupled Josephson equation, Physica D, 2004, 197(3–4): 375–391. · Zbl 1066.34046
[18] Z. Ma, Z. Liu, and G. Zhan, A new method to realize cluster synchronization in connected chaotic networks, Chaos, 2006, 16(2): 023103. · Zbl 1146.37330
[19] Kunihiko Kaneko, Relevance of dynamic clustering to biological networks, Physica D, 1994, 75(1–3): 55–73. · Zbl 0859.92001
[20] I. V. Belykh, V. N. Belykh, and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 2004, 195(1–2): 159–187. · Zbl 1098.82622
[21] I. V. Belykh, M. Hasler, M. Lauret, and H. Nijmeijer, Synchronization and graph topology, Int. J. Bifurcation and Chaos, 2005, 15(11): 3423–3433. · Zbl 1107.34047
[22] I. V. Belykh, V. N. Belykh, and M. Hasler, Synchronization in asymmetrically coupled networks with node balance, Chaos, 2006, 16(1): 015102. · Zbl 1144.37318
[23] A. M. Chen, J. A. Lu, and J. H. Lü, Generating hyperchaotic Lü attrctor via state feedback control, Physica A, 2006, 364(1): 103–110.
[24] O. E. Rössler, An equation for continuous chaos, Phys. Lett. A, 1976, 57(5): 397–398. · Zbl 1371.37062
[25] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci, 1963, 20(2): 130–141. · Zbl 1417.37129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.