## Global stability of a stage-structured predator-prey system.(English)Zbl 1173.34043

The authors consider the following two prey-predator systems with stage structure: $\begin{cases} \dot{x}(t)=rx(t)[1-x(t)/K]-ax(t)y(t),\\ \dot{y}(t)=be^{-\gamma \tau}x(t-\tau)y(t-\tau)-dy(t)-cy^2(t),\\ \dot{y_j}(t)=bx(t)y(t)-be^{-\gamma \tau}x(t-\tau)y(t-\tau)-\gamma y_j(t),\\ x(\theta),y(\theta),y_j(\theta)\geq 0\quad \text{is continuous on }-\tau\leq \theta <0,\\ \text{and }x(0),y(0),y_j(0)>0;\end{cases}\tag{1}$
$\begin{cases}\dot{x}_j(t)=b_1x(t)-\gamma_1x_j(t)-b_1e^{-\gamma_1\tau_1}x(t-\tau_1),\\ \dot{x}(t)=b_1e^{-\gamma_1\tau_1}x(t-\tau_1)-c_1x^2(t)-ax(t)y(t),\\ \dot{y}(t)=be^{-\gamma \tau}x(t-\tau)y(t-\tau)-dy(t)-cy^2(t),\\ \dot{y}_j(t)=bx(t)y(t)-be^{-\gamma \tau}x(t-\tau)y(t-\tau)-\gamma y_j(t),\\ x(\theta),x_j(\theta),y(\theta),y_j(\theta)\geq 0\;\text{is continuous on }-\tau_2\leq \theta <0,\\ \tau_2=\max\{\tau_1,\tau\}, \text{ and }x(0),x_j(0),y(0),y_j(0)>0.\end{cases}\tag{2}$ Here $$y(t), y_j(t)$$ represent the densities of immature and mature individual predators at time $$t$$, and $$x(t), x_j(t)$$ represent the densities of immature and mature individual preys at time $$t$$. They discuss the existence of equilibria. By using the eigenvalue method, the local stability of each equilibrium is discussed. Furthermore, the global stability of each nonnegative equilibrium is also investigated. Numerical simulation suggests that time delay has both oscillatory dynamics and stabilizing effects.

### MSC:

 34K20 Stability theory of functional-differential equations 92D25 Population dynamics (general)
Full Text:

### References:

  DOI: 10.1016/0025-5564(90)90019-U · Zbl 0719.92017  DOI: 10.1137/0152048 · Zbl 0760.92018  DOI: 10.1137/S0036141000376086 · Zbl 1013.92034  DOI: 10.1016/S0898-1221(99)00316-8 · Zbl 0968.92018  Gourley S. A., J. Math. Biol. 49 pp 188–  Kuang Y., Delay Differential Equations with Applications in Population Dynamics (1993) · Zbl 0777.34002  DOI: 10.1007/BF03167566 · Zbl 0758.34065  DOI: 10.1016/S0092-8240(03)00008-9 · Zbl 1334.92349  DOI: 10.1137/S0036139993252839 · Zbl 0847.34076  DOI: 10.1016/S0895-7177(02)00279-0 · Zbl 1077.92516  DOI: 10.1016/S0025-5564(00)00068-7 · Zbl 1028.34049  Song X., Acta Math. Appl. Sinica 18 pp 307–  DOI: 10.1016/S0895-7177(02)00104-8 · Zbl 1024.92015  DOI: 10.1016/j.amc.2003.11.008 · Zbl 1056.92063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.