×

zbMATH — the first resource for mathematics

Exact algorithms for the minimum latency problem. (English) Zbl 1173.68832

MSC:
68W05 Nonnumerical algorithms
90C39 Dynamic programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Afrati, F.; Cosmadakis, S.; Papadimitriou, C.; Papageorgiou, G.; Papakostantinou, N., The complexity of the traveling repairman problem, Theoret. inform. appl., 20, 1, 79-87, (1986) · Zbl 0585.68057
[2] Archer, A.; Williamson, D.P., Faster approximation algorithms for the minimum latency problem, (), 88-96 · Zbl 1094.68699
[3] Arora, S.; Karakostas, G., Approximation schemes for minimum latency problems, SIAM J. comput., 32, 5, 1317-1337, (2003) · Zbl 1047.68166
[4] Blum, A.; Chalasani, P.; Coppersmith, D.; Pulleyblank, B.; Raghavan, P.; Sudan, M., The minimum latency problem, (), 163-171 · Zbl 1345.90073
[5] Chaudhuri, K.; Godfrey, B.; Rao, S.; Talwar, K., Paths, trees, and minimum latency tours, (), 36-45
[6] Garcia, A.; Jodrá, P.; Tejel, J., A note on the traveling repairmen problem, Networks, 40, 1, 27-31, (2002) · Zbl 1027.90104
[7] Goemans, M.; Kleinberg, J., An improved approximation ratio for the minimum latency problem, Math. program., 82, 114-124, (1998) · Zbl 0920.90138
[8] Koutsoupias, E.; Papadimitriou, C.; Yannakakis, M., Searching a fixed graph, (), 280-289 · Zbl 1045.90532
[9] Minieka, E., The delivery man problem on a tree network, Ann. oper. res., 18, 261-266, (1989) · Zbl 0707.90094
[10] Reinelt, G., TSPLIB—a traveling salesman problem library, ORSA J. comput., 3, 376-384, (1991), See also · Zbl 0775.90293
[11] Sitters, R., The minimum latency problem is NP-hard for weighted trees, (), 230-239 · Zbl 1049.90531
[12] Wu, B.Y., Polynomial time algorithms for some minimum latency problems, Inform. process. lett., 75, 5, 225-229, (2000) · Zbl 1339.68125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.