×

zbMATH — the first resource for mathematics

Hypercyclicity of special operators on Hilbert function spaces. (English) Zbl 1174.47312
Summary: In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.

MSC:
47A16 Cyclic vectors, hypercyclic and chaotic operators
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B33 Linear composition operators
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] J. Bes: Three problems on hypercyclic operators. PhD. Thesis. Kent State University, 1998.
[2] J. Bes, A. Peris: Hereditarily hypercyclic operators. J. Funct. Anal. 167 (1999), 94–112. · Zbl 0941.47002 · doi:10.1006/jfan.1999.3437
[3] P. S. Bourdon: Orbits of hyponormal operators. Mich. Math. J. 44 (1997), 345–353. · Zbl 0896.47020 · doi:10.1307/mmj/1029005709
[4] P. S. Bourdon, J. H. Shapiro: Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc. 125. Am. Math. Soc., Providence, 1997. · Zbl 0996.47032
[5] P. S. Bourdon, J. H. Shapiro: Hypercyclic operators that commute with the Bergman backward shift. Trans. Am. Math. Soc 352 (2000), 5293–5316. · Zbl 0960.47003 · doi:10.1090/S0002-9947-00-02648-9
[6] R. M. Gethner, J. H. Shapiro: Universal vectors for operators on spaces of holomorphic functions. Proc. Am. Math. Soc. 100 (1987), 281–288. · Zbl 0618.30031 · doi:10.1090/S0002-9939-1987-0884467-4
[7] G. Godefroy, J. H. Shapiro: Operators with dense, invariant cyclic vector manifolds. J. Funct. Anal. 98 (1991), 229–269. · Zbl 0732.47016 · doi:10.1016/0022-1236(91)90078-J
[8] K. Goswin, G. Erdmann: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 35 (1999), 345–381. · Zbl 0933.47003
[9] D. A. Herrero: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991), 179–190. · Zbl 0758.47016 · doi:10.1016/0022-1236(91)90058-D
[10] C. Kitai: Invariant closed sets for linear operators. Thesis. University of Toronto, Toronto, 1982.
[11] C. Read: The invariant subspace problem for a class of Banach spaces. 2. Hypercyclic operators. Isr. J. Math. 63 (1988), 1–40. · Zbl 0782.47002 · doi:10.1007/BF02765019
[12] S. Rolewicz: On orbits of elements. Stud. Math. 32 (1969), 17–22. · Zbl 0174.44203
[13] H. N. Salas: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347 (1995), 993–1004. · Zbl 0822.47030 · doi:10.2307/2154883
[14] A. L. Shields, L. J. Wallen: The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1971), 777–788. · Zbl 0207.13801 · doi:10.1512/iumj.1971.20.20062
[15] B. Yousefi, H. Rezaei: Hypercyclicity on the algebra of Hilbert-Schmidt operators. Result. Math. 46 (2004), 174–180. · Zbl 1080.47013
[16] B. Yousefi, H. Rezaei: Some necessary and sufficient conditions for Hypercyclicity Criterion. Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. · Zbl 1084.47003 · doi:10.1007/BF02829627
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.