×

Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. (English) Zbl 1174.76013

Summary: We consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy’s law and Stokes equations in a single form of PDE but with strongly discontinuous viscosity coefficient and zeroth-order term coefficient. We present three different methods to construct uniformly stable finite element approximations. The first two methods are based on the original weak formulations of Darcy-Stokes-Brinkman equations. In the first method, we consider the existing Stokes elements. We show that a stable Stokes element is also uniformly stable with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and only if the discretely divergence-free velocity implies almost everywhere divergence-free one. In the second method, we construct uniformly stable elements by modifying some well-known \(H\)(div)-conforming elements. We give some new 2D and 3D elements in a unified way. In the last method we modify the original weak formulation of Darcy-Stokes-Brinkman equations with a stabilization term. We show that all traditional stable Stokes elements are uniformly stable with respect to the coefficients and their jumps under this new formulation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite