×

zbMATH — the first resource for mathematics

Total-energy calculations on a real space grid with localized functions and a plane-wave basis. (English) Zbl 1174.82312
Summary: We present a novel real space formalism for ab initio electronic structure calculations. We use localized non-orthogonal functions that are expressed in terms of a basis set that is equivalent to a plane-wave basis. As a result, advantages of the plane-wave approach also apply to our method: its applicability to any lattice symmetry, and systematic basis set improvement via the kinetic energy cut-off parameter. The localization of our functions enables the use of fast Fourier transforms over small regions of the simulation cell to calculate the total energy with efficiency and accuracy. With just one further variational approximation, namely the truncation of the density matrix, the calculation may be performed with a cost that scales linearly with system size for insulating systems.

MSC:
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopolous, J.D., Rev. mod. phys., 64, 1045, (1992)
[2] Kohn, W.; Sham, L.J., Phys. rev., 140, 1133, (1965)
[3] Goedecker, S., Rev. mod. phys., 71, 1085, (1999)
[4] Galli, G.; Parrinello, M., Phys. rev. lett., 69, 3547, (1992)
[5] Wannier, G.E., Phys. rev., 52, 191, (1937)
[6] Kohn, W., Phys. rev., 115, 809, (1959)
[7] des Cloizeaux, J., Phys. rev., 135, 685, (1964)
[8] Ismail-Beigi, S.; Arias, T.A., Phys. rev. lett., 82, 2127, (1999)
[9] He, L.; Vanderbilt, D., Phys. rev. lett., 86, 5341, (2001)
[10] Anderson, P.W., Phys. rev. lett., 21, 13, (1968)
[11] Hernández, E.; Gillan, M.J.; Goringe, C.M., Phys. rev. B, 53, 7147, (1996)
[12] Fattebert, J.-L.; Bernholc, J., Phys. rev. B, 62, 1713, (2000)
[13] Hernández, E.; Gillan, M.J.; Goringe, C.M., Phys. rev. B, 55, 13 485, (1997)
[14] Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A., Phys. rev. B, 59, 12 352, (1999)
[15] Artacho, E.; Miláns del Bosch, L., Phys. rev. A, 43, 5770, (1991)
[16] White, C.A.; Maslen, P.; Lee, M.S.; Head-Gordon, M., Chem. phys. lett., 276, 133, (1997)
[17] Kleinman, L.; Bylander, D.M., Phys. rev. lett., 48, 1425, (1982)
[18] Skylaris, C.-K.; Mostofi, A.A.; Haynes, P.D.; Pickard, C.J.; Payne, M.C., Comput. phys. commun., 140, 135, (2001)
[19] King-Smith, R.D.; Payne, M.C.; Lin, J.S., Phys. rev. B, 44, 13 063, (1991)
[20] Sankey, O.F.; Niklewski, D.J., Phys. rev. B, 40, 3979, (1989)
[21] Li, X.-P.; Nunes, R.W.; Vanderbilt, D., Phys. rev. B, 47, 10 891, (1993)
[22] Daw, M.S., Phys. rev. B, 47, 10 895, (1993)
[23] Nunes, R.W.; Vanderbilt, D., Phys. rev. B, 50, 17 611, (1994)
[24] Millam, J.M.; Scuseria, G.E., J. chem. phys., 106, 5569, (1997)
[25] McWeeny, R., Rev. mod. phys., 32, 335, (1960)
[26] Troullier, N.; Martins, J.L., Phys. rev. B, 43, 1993, (1991)
[27] C.-K. Skylaris, A.A. Mostofi, P.D. Haynes, O. Diéguez, M.C. Payne, (2002), submitted
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.