## The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator.(English)Zbl 1175.34053

The authors study the stability of a special type of nonlinear planar time-periodic system and generalise results of R. Ortega, called third order approximation, cf. [J. Dyn. Differ. Equations 4, No. 4, 651–665 (1992; Zbl 0761.34036), SIAM J. Math. Anal. 25, No. 5, 1393–1401 (1994; Zbl 0807.34065), J. Differ. Equations 128, No. 2, 491–518 (1996; Zbl 0855.34058), Ten mathematical essays on approximation in analysis and topology. Amsterdam: Elsevier. 215–234 (2005; Zbl 1090.34045)]. In particular, they consider the system
$\begin{cases} \dot{x}=a(t)y+c(t)y^{2n-1}+\frac{\partial G}{\partial y}(t,x,y),\\ \dot{y}=-b(t)x-d(t)x^{2n-1}-\frac{\partial G}{\partial x}(t,x,y), \end{cases}\tag{1}$ where $$a,b,c,d$$ are $$T$$-periodic functions, and $$n\geq2$$. Moreover, $$G: \mathbb R\times B_\epsilon(0)\rightarrow \mathbb R$$ is a continuous, $$T$$-periodic function with continuous derivatives of all orders with respect to $$(x,y)$$, and $$G(t,x,y)=O((x^2+y^2)^{n+1/2})$$ as $$(x,y)\rightarrow 0$$, uniformly with respect to $$t\in \mathbb R$$.
The main result Theorem 3.5 is that if the trivial solution of the corresponding linear system problem is stable, $$\int_0^T |c(t)|\, dt\not=0$$, $$\int_0^T |d(t)|\, dt\not=0$$, and one of the following two conditions holds
($$H_1$$) $$c(t)\geq 0$$, $$d(t)\geq 0$$,
($$H_2$$) $$c(t)\leq 0$$, $$d(t)\leq 0$$,
then the trivial solution of (1) is stable.
The proof uses a reduction to a special case; they show that when a linear periodic planar Hamiltonian system is elliptic, there always exists a translation of time, which transforms the system into an $$R$$-elliptic one, i.e. the monodromy matrix of the transformed equation is a rigid rotation.
The main result is applied the relativistic oscillator.

### MSC:

 34C25 Periodic solutions to ordinary differential equations 34D20 Stability of solutions to ordinary differential equations 34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

### Citations:

Zbl 0761.34036; Zbl 0807.34065; Zbl 0855.34058; Zbl 1090.34045
Full Text:

### References:

  Bereanu, C.; Mawhin, J., Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian, J. differential equations, 243, 536-557, (2007) · Zbl 1148.34013  Bereanu, C.; Mawhin, J., Periodic solutions of some nonlinear perturbations of the φ-Laplacian with possibly bounded φ, Nonlinear anal., 68, 1668-1681, (2008) · Zbl 1147.34032  Chu, J.; Zhang, M., Rotation numbers and Lyapunov stability of elliptic periodic solutions, Discrete contin. dyn. syst., 21, 1071-1094, (2008) · Zbl 1161.37041  Goldstein, H., Classical mechanics, (1980), Addison-Wesley Reading · Zbl 0491.70001  Hale, J.K., Ordinary differential equations, (1980), Krieger New York · Zbl 0186.40901  Lei, J.; Li, X.; Yan, P.; Zhang, M., Twist character of the least amplitude periodic solution of the forced pendulum, SIAM J. math. anal., 35, 844-867, (2003) · Zbl 1189.37064  Levitan, B.M.; Sargsjan, L.S., Sturm – liouville and Dirac operators, Math. appl. (soviet ser.), vol. 59, (1991), Kluwer Academic Dordrecht  Llibre, J.; Ortega, R., On the families of periodic orbits of the Sitnikov problem, SIAM J. appl. dyn. syst., 7, 561-576, (2008) · Zbl 1159.70010  Liu, B., The stability of the equilibrium of reversible system, Trans. amer. math. soc., 351, 515-531, (1999) · Zbl 0924.58052  Manásevich, R.; Mawhin, J., Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. differential equations, 145, 367-393, (1998) · Zbl 0910.34051  Manásevich, R.; Mawhin, J., Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean math. soc., 37, 665-685, (2000) · Zbl 0976.34013  Moser, J., On invariant curves of area preserving mappings of an annulus, Nachr. akad. wiss. Göttingen math.-phys. kl. II, 1-20, (1962) · Zbl 0107.29301  Núñez, D.; Ortega, R., Parabolic fixed points and stability criteria for nonlinear Hill’s equation, Z. angew. math. phys., 51, 890-911, (2000) · Zbl 0973.34046  D. Núñez, P.J. Torres, KAM dynamics in the driven relativistic harmonic oscillator, preprint  Ortega, R., The twist coefficient of periodic solutions of a time-dependent Newton’s equation, J. dynam. differential equations, 4, 651-665, (1992) · Zbl 0761.34036  Ortega, R., The stability of equilibrium of a nonlinear Hill’s equation, SIAM J. math. anal., 25, 1393-1401, (1994) · Zbl 0807.34065  Ortega, R., Periodic solution of a Newtonian equation: stability by the third approximation, J. differential equations, 128, 491-518, (1996) · Zbl 0855.34058  Ortega, R., The stability of the equilibrium: A search for the right approximation, (), 215-234 · Zbl 1090.34045  Ortega, R.; Zhang, M., Optimal bounds for bifurcation values of a superlinear periodic problem, Proc. roy. soc. Edinburgh sect. A, 135, 119-132, (2005) · Zbl 1088.34036  Siegel, C.; Moser, J., Lectures on celestial mechanics, (1971), Springer-Verlag Berlin · Zbl 0312.70017  Simo, C., Stability of degenerate fixed points of analytic area preserving mappings, Astérisque, 98-99, 184-194, (1982) · Zbl 0516.58028  Sitnikov, K.A., Existence of oscillating motion for the three-body problem, Dokl. akad. nauk, 133, 303-306, (1960)  Torres, P.J., Twist solutions of a Hill’s equations with singular term, Adv. nonlinear stud., 2, 279-287, (2002) · Zbl 1016.34044  Torres, P.J., Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity, Proc. roy. soc. Edinburgh sect. A, 137, 196-201, (2007) · Zbl 1190.34050  Zhang, M., Sobolev inequalities and ellipticity of planar linear Hamiltonian systems, Adv. nonlinear stud., 8, 633-654, (2008) · Zbl 1165.34053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.