×

zbMATH — the first resource for mathematics

Statistical approximation for stochastic processes. (English) Zbl 1175.41021
Summary: We obtain strong Korovkin-type approximation theorems for stochastic processes by using the concept of \(A\)-statistical convergence from the summability theory.

MSC:
41A36 Approximation by positive operators
62L20 Stochastic approximation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anastassiou G.A., Facta University Series in Mathematical Information 22 pp 43– (2007)
[2] Anastassiou G.A., J. Math. Anal. Appl. 157 pp 366– (1991) · Zbl 0733.60074
[3] Anastassiou G.A., J. Math. Anal. Appl. 340 pp 476– (2008) · Zbl 1133.41004
[4] Anastassiou G.A., Comput. Math. Appl. 55 pp 573– (2008) · Zbl 1155.41314
[5] Connor J.S., Analysis 8 pp 47– (1988) · Zbl 0653.40001
[6] Duman O., Demonstratio Math. 36 pp 873– (2003)
[7] Duman O., J. Comput. Anal. Appl. 10 pp 333– (2008)
[8] Duman O., Comput. Math. Appl. 52 pp 967– (2006) · Zbl 1148.41023
[9] Duman O., Math. Comput. Modelling 44 pp 763– (2006) · Zbl 1132.41330
[10] Duman O., Studia. Math. 161 pp 187– (2004) · Zbl 1049.41016
[11] Erkuş E., Studia Sci. Math. Hungar. 43 pp 285– (2006)
[12] Erkuş E., Appl. Math. Comput. 182 pp 213– (2006) · Zbl 1103.41024
[13] Fast H., Colloquim Mathematica 2 pp 241– (1951)
[14] Freedman A.R., Pacific J. Math. 95 pp 293– (1981) · Zbl 0504.40002
[15] Fridy J.A., Analysis 5 pp 301– (1985) · Zbl 0588.40001
[16] Hardy G.H., Divergent Series (1949) · Zbl 0032.05801
[17] Kolk E., Analysis 13 pp 77– (1993) · Zbl 0801.40005
[18] Korovkin P.P., Linear Operators and Approximation Theory (1960) · Zbl 0094.10201
[19] Miller H.I., Transctions of the American Mathematical Society 347 pp 1811– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.