Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. (English) Zbl 1175.74009

Summary: We utilize the recently developed surface Cauchy-Born model, which extends the standard Cauchy-Born theory to account for surface stresses due to undercoordinated surface atoms, to study the coupled influence of boundary conditions and surface stresses on the resonant properties of \(\langle \)1 0 0\(\rangle\) gold nanowires with \(\{\)1 0 0\(\}\) surfaces. There are two major purposes to the present work. First, we quantify, for the first time, variations in the nanowire resonant frequencies due to surface stresses as compared to the corresponding bulk material which does not observe surface effects within a finite deformation framework depending on whether fixed/free or fixed/fixed boundary conditions are utilized. We find that while the resonant frequencies of fixed/fixed nanowires are elevated as compared to the corresponding bulk material, the resonant frequencies of fixed/free nanowires are reduced as a result of compressive strain caused by the surface stresses. Furthermore, we find that for a diverse range of nanowire geometries, the variation in resonant frequencies for both boundary conditions due to surface stresses is a geometric effect that is characterized by the nanowire aspect ratio. The present results are found to agree well with existing experimental data for both types of boundary conditions.
The second major goal of this work is to quantify, for the first time, how both the residual (strain-independent) and surface elastic (strain-dependent) parts of the surface stress impact the resonant frequencies of metal nanowires within the framework of nonlinear, finite deformation kinematics. We find that if finite deformation kinematics are considered, the strain-independent surface stress substantially alters the resonant frequencies of the nanowires; however, we also find that the strain-dependent surface stress has a significant effect, one that can be comparable to or even larger than the effect of the strain-independent surface stress depending on the boundary condition, in shifting the resonant frequencies of the nanowires as compared to the bulk material.


74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI


[1] Balamane, H.; Halicioglu, T.; Tiller, W.A., Comparative study of silicon empirical interatomic potentials, Phys. rev. B, 46, 4, 2250-2279, (1992)
[2] Barnes, W.L.; Dereux, A.; Ebbeson, T.W., Surface plasmon subwavelength optics, Nature, 424, 824-830, (2003)
[3] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2002), Wiley New York
[4] Cammarata, R.C., Surface and interface stress effects in thin films, Progr. surf. sci., 46, 1, 1-38, (1994)
[5] Canham, L.T., Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers, Appl. phys. lett., 57, 10, 1046-1048, (1990)
[6] Carr, D.W.; Evoy, S.; Sekaric, L.; Craighead, H.G.; Parpia, J.M., Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. phys. lett., 75, 7, 920-922, (1999)
[7] Chen, Y.; Dorgan, B.L.; McIlroy, D.N.; Aston, D.E., On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires, J. appl. phys., 100, 104301, (2006)
[8] Cleland, A.N.; Roukes, M.L., Fabrication of high frequency nanometer scale mechanical resonators from bulk si crystals, Appl. phys. lett., 69, 18, 2653-2655, (1996)
[9] Cleland, A.N.; Roukes, M.L., Noise processes in nanomechanical resonators, J. appl. phys., 92, 5, 2758-2769, (2002)
[10] Craighead, H.G., Nanoelectromechanical systems, Science, 290, 1532-1535, (2000)
[11] Cuenot, S.; Frétigny, C.; Demoustier-Champagne, S.; Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phys. rev. B, 69, 165410, (2004)
[12] Davis, Z.J.; Boisen, A., Aluminum nanocantilevers for high sensitivity mass sensors, Appl. phys. lett., 87, 013102, (2005)
[13] Daw, M.S.; Baskes, M.I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. rev. B, 29, 12, 6443-6453, (1984)
[14] Diao, J.; Gall, K.; Dunn, M.L., Surface-stress-induced phase transformation in metal nanowires, Nat. mater., 2, 10, 656-660, (2003)
[15] Diao, J.; Gall, K.; Dunn, M.L.; Zimmerman, J.A., Atomistic simulations of the yielding of gold nanowires, Acta mater., 54, 643-653, (2006)
[16] Dikin, D.A.; Chen, X.; Ding, W.; Wagner, G.; Ruoff, R.S., Resonance vibration of amorphous sio_{2} nanowires driven by mechanical or electrical field excitation, J. appl. phys., 93, 1, 226-230, (2003)
[17] Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. mech. phys. solids, 53, 1827-1854, (2005) · Zbl 1120.74683
[18] Ekinci, K.L., Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS), Small, 1, 8-9, 786-797, (2005)
[19] Ekinci, K.L.; Roukes, M.L., Nanoelectromechanical systems, Rev. sci. instrum., 76, 061101, (2005)
[20] Ekinci, K.L.; Yang, Y.T.; Roukes, M.L., Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems, J. appl. phys., 95, 5, 2682-2689, (2004)
[21] Evoy, S.; Carr, D.W.; Sekaric, L.; Olkhovets, A.; Parpia, J.M.; Craighead, H.G., Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators, J. appl. phys., 86, 11, 6072-6077, (1999)
[22] Evoy, S.; Olkhovets, A.; Sekaric, L.; Parpia, J.M.; Craighead, H.G.; Carr, D.W., Temperature-dependent internal friction in silicon nanoelectromechanical systems, Appl. phys. lett., 77, 15, 2397-2399, (2000)
[23] Foiles, S.M.; Baskes, M.I.; Daw, M.S., Embedded-atom-method functions for the FCC metals cu, ag, au, ni, pd, pt, and their alloys, Phys. rev. B, 33, 12, 7893-7991, (1986)
[24] Gurtin, M.E.; Murdoch, A., A continuum theory of elastic material surfaces, Arch. ration. mech. anal., 57, 291-323, (1975) · Zbl 0326.73001
[25] Gurtin, M.E.; Markenscoff, X.; Thurston, R.N., Effects of surface stress on the natural frequency of thin crystals, Appl. phys. lett., 29, 9, 529-530, (1976)
[26] Haiss, W., Surface stress of Clean and adsorbate-covered solids, Rep. progr. phys., 64, 591-648, (2001)
[27] Hasmy, A.; Medina, E., Thickness induced structural transition in suspended FCC metal nanofilms, Phys. rev. lett., 88, 9, 096103, (2002)
[28] Heidelberg, A.; Ngo, L.T.; Wu, B.; Phillips, M.A.; Sharma, S.; Kamins, T.I.; Sader, J.E.; Boland, J.J., A generalized description of the elastic properties of nanowires, Nano lett., 6, 6, 1101-1106, (2006)
[29] Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S.H.; Schmidt, V.; Senz, S.; Werner, P.; Gosele, U.; Ballif, C., Measurement of the bending strength of vapor – liquid – solid grown silicon nanowires, Nano lett., 6, 4, 622-625, (2006)
[30] Houston, B.H.; Photiadis, D.M.; Marcus, M.H.; Bucaro, J.A.; Liu, X.; Vignola, J.F., Thermoelastic loss in microscale oscillators, Appl. phys. lett., 80, 7, 1300-1302, (1976)
[31] Huang, Z.P.; Sun, L., Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis, Acta mech., 190, 151-163, (2007) · Zbl 1117.74047
[32] Huang, Z.P.; Wang, J., A theory of hyperelasticity of multi-phase media with surface/interface energy effect, Acta mech., 182, 195-210, (2006) · Zbl 1121.74007
[33] Huang, G.Y.; Gao, W.; Yu, S.W., Model for the adsorption-induced change in resonance frequency of a cantilever, Appl. phys. lett., 89, 043506, (2006)
[34] Huang, X.M.H.; Zorman, C.A.; Mehregany, M.; Roukes, M.L., Nanodevice motion at microwave frequencies, Nature, 42, 496, (2003)
[35] Husain, A.; Hone, J.; Postma, H.W.C.; Huang, X.M.H.; Drake, T.; Barbic, M.; Scherer, A.; Roukes, M.L., Nanowire-based very-high-frequency electromechanical oscillator, Appl. phys. lett., 83, 6, 1240-1242, (2003)
[36] Ilic, B.; Craighead, H.G.; Krylov, S.; Senaratne, W.; Ober, C.; Neuzil, P., Attogram detection using nanoelectromechanical oscillators, J. appl. phys., 95, 7, 3694-3703, (2004)
[37] Jing, G.Y.; Duan, H.L.; Sun, X.M.; Zhang, Z.S.; Xu, J.; Li, Y.D.; Wang, J.X.; Yu, D.P., Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy, Phys. rev. B, 73, 235409, (2006)
[38] Kondo, Y.; Ru, Q.; Takayanagi, K., Thickness induced structural phase transition of gold nanofilm, Phys. rev. lett., 82, 4, 751-754, (1999)
[39] Lachut, M.J.; Sader, J.E., Effect of surface stress on the stiffness of cantilever plates, Phys. rev. lett., 99, 206102, (2007)
[40] Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G., Cantilever transducers as a platform for chemical and biological sensors, Rev. sci. instrum., 75, 7, 2229-2253, (2004)
[41] Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A., Thermal conductivity of individual silicon nanowires, Appl. phys. lett., 83, 14, 2934-2936, (2003)
[42] Li, M.; Mayer, T.S.; Sioss, J.A.; Keating, C.D.; Bhiladvala, R.B., Template-grown metal nanowires as resonators: performance and characterization of dissipative and elastic properties, Nano lett., 7, 11, 3281-3284, (2007)
[43] Li, X.; Ono, T.; Wang, Y.; Esashi, M., Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus, Appl. phys. lett., 83, 15, 3081-3083, (2003)
[44] Liang, H.; Upmanyu, M.; Huang, H., Size-dependent elasticity of nanowires: nonlinear effects, Phys. rev. B, 71, 241403(R), (2005)
[45] Liang, W.; Zhou, M.; Ke, F., Shape memory effect in cu nanowires, Nano lett., 5, 10, 2039-2043, (2005)
[46] Lieber, C.M., Nanoscale science and technology: building a big future from small things, MRS bull., 28, 7, 486-491, (2003)
[47] Lu, P.; Lee, H.P.; Lu, C.; O’Shea, S.J., Surface stress effects on the resonance properties of cantilever sensors, Phys. rev. B, 72, 085405, (2005)
[48] McFarland, A.W.; Poggi, M.A.; Doyle, M.J.; Bottomley, L.A.; Colton, J.S., Influence of surface stress on the resonance behavior of microcantilevers, Appl. phys. lett., 87, 053505, (2005)
[49] Miller, R.E.; Shenoy, V.B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147, (2000)
[50] Nam, C.Y.; Jaroenapibal, P.; Tham, D.; Luzzi, D.E.; Evoy, S.; Fischer, J.E., Diameter-dependent electromechanical properties of gan nanowires, Nano lett., 6, 2, 153-158, (2006)
[51] Namazu, T.; Isono, Y.; Tanaka, T., Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM, J. microelectromechanical syst., 9, 4, 450-459, (2000)
[52] Ohnishi, H.; Kondo, Y.; Takayanagi, K., Quantized conductance through individual rows of suspended gold atoms, Nature, 395, 780-783, (1998)
[53] Park, H.S., Strain sensing through the resonant properties of deformed metal nanowires, J. appl. phys., 104, 013516, (2008)
[54] Park, H.S., Surface stress effects on the resonant properties of silicon nanowires, J. appl. phys., 103, 123504, (2008)
[55] Park, H.S.; Klein, P.A., Surface cauchy – born analysis of surface stress effects on metallic nanowires, Phys. rev. B, 75, 085408, (2007)
[56] Park, H.S.; Klein, P.A., A surface cauchy – born model for silicon nanostructures, Comput. methods appl. mech. eng., 197, 3249-3260, (2008) · Zbl 1159.74312
[57] Park, H.S.; Gall, K.; Zimmerman, J.A., Shape memory and pseudoelasticity in metal nanowires, Phys. rev. lett., 95, 255504, (2005)
[58] Park, H.S.; Klein, P.A.; Wagner, G.J., A surface cauchy – born model for nanoscale materials, Int. J. numer. methods eng., 68, 1072-1095, (2006) · Zbl 1128.74005
[59] Petrova, H.; Perez-Juste, J.; Zhang, Z.Y.; Zhang, J.; Kosel, T.; Hartland, G.V., Crystal structure dependence of the elastic constants of gold nanorods, J. mater. chem., 16, 40, 3957-3963, (2006)
[60] Rubio, G.; Agrait, N.; Vieira, S., Atomic-sized metallic contacts: mechanical properties and electronic transport, Phys. rev. lett., 76, 13, 2302-2305, (1996)
[61] Sader, J.E., Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: rectangular plates, J. appl. phys., 89, 5, 2911-2921, (2001)
[62] Sharma, P.; Ganti, S.; Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. phys. lett., 82, 4, 535-537, (2003)
[63] Shenoy, V.B., Atomistic calculations of elastic properties of metallic FCC crystal surfaces, Phys. rev. B, 71, 094104, (2005)
[64] Sun, C.T.; Zhang, H., Size-dependent elastic moduli of platelike nanomaterials, J. appl. phys., 92, 2, 1212-1218, (2003)
[65] Sundararajan, S.; Bhushan, B.; Namazu, T.; Isono, Y., Mechanical property measurements of nanoscale structures using an atomic force microscope, Ultramicroscopy, 91, 111-118, (2002)
[66] Tadmor, E.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. mag. A, 73, 1529-1563, (1996)
[67] Tahoe, \(\langle\)http://tahoe.ca.sandia.gov⟩.
[68] Tang, Z.; Zhao, H.; Li, G.; Aluru, N.R., Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures, Phys. rev. B, 74, 064110, (2006)
[69] Trilinos, \(\langle\)http://software.sandia.gov/trilinos/index.html⟩.
[70] Verbridge, S.S.; Parpia, J.M.; Reichenbach, R.B.; Bellan, L.M.; Craighead, H.G., High quality factor resonance at room temperature with nanostrings under high tensile stress, J. appl. phys., 99, 124304, (2006)
[71] Verbridge, S.S.; Shapiro, D.F.; Craighead, H.G.; Parpia, J.M., Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators, Nano lett., 7, 6, 1728-1735, (2007)
[72] Wan, J.; Fan, Y.L.; Gong, D.W.; Shen, S.G.; Fan, X.Q., Surface relaxation and stress of FCC metals: cu, ag, au, ni, pd, pt, al and pb, Modelling simulation mater. sci. eng., 7, 189-206, (1999)
[73] Wang, J.; Duan, H.L.; Huang, Z.P.; Karihaloo, B.L., A scaling law for properties of nano-structured materials, Proc. R. soc. A, 462, 1355-1363, (2006) · Zbl 1149.76652
[74] Weaver, W.; Timoshenko, S.P.; Young, D.H., Vibration problems in engineering, (1990), Wiley New York
[75] Wei, G.; Shouwen, Y.; Ganyun, H., Finite element characterization of the size-dependent mechanical behaviour in nanosystems, Nanotechnology, 17, 1118-1122, (2006)
[76] Wiley, B.J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D.H.; Xia, Y., Synthesis and electrical characterization of silver nanobeams, Nano lett., 6, 10, 2273-2278, (2006)
[77] Wong, E.W.; Sheehan, P.E.; Lieber, C.M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971-1975, (1997)
[78] Wu, B.; Heidelberg, A.; Boland, J.J., Mechanical properties of ultrahigh-strength gold nanowires, Nat. mater., 4, 525-529, (2005)
[79] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. mater., 15, 5, 353-389, (2003)
[80] Yang, J.; Ono, T.; Esashi, M., Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers, Appl. phys. lett., 77, 23, 3860-3862, (2000)
[81] Yang, J.; Ono, T.; Esashi, M., Investigating surface stress: surface loss in ultrathin single-crystal silicon cantilevers, J. vac. sci. technol. B, 19, 2, 551-556, (2001)
[82] Yasumura, K.Y.; Stowe, T.D.; Chow, E.M.; Pfafman, T.; Kenny, T.W.; Stipe, B.C.; Rugar, D., Quality factors in micron- and submicron-thick cantilevers, J. microelectromechanical syst., 9, 1, 117-125, (2000)
[83] Zhou, L.G.; Huang, H., Are surfaces elastically softer or stiffer?, Appl. phys. lett., 84, 11, 1940-1942, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.