zbMATH — the first resource for mathematics

Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling. (English) Zbl 1175.82077
Summary: Results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to \(10^{8}\) unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.

82D37 Statistical mechanics of semiconductors
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
78A35 Motion of charged particles
PDF BibTeX Cite
Full Text: DOI
[1] Kramer, Kevin M.; Nicholas, W.; Hitchon, G., Semiconductor devices, A simulation approach, (1997), Prentice-Hall PTR
[2] Sze, S.M., Physics of semiconductor devices, (1981), John Wiley & Sons
[3] Scharfetter, D.L.; Gummel, H.K., Large-signal analysis of a silicon Read diode oscillator, IEEE trans. electron dev., 16, 1, 64-77, (1969)
[4] Gummel, H.K., A self-consistent iterative scheme for one-dimensional steady state transistor calculations, IEEE trans. electron dev., ED-11, 455-465, (1964)
[5] Medici two-dimensional device simulation program user manual, Technical Report, Synopsys, February 2003.
[6] Davinci three-dimensional device simulation program manual type, Technical Report, Synopsys, February 2003.
[7] Meza, J.C.; Tuminaro, R.S., A multigrid preconditioner for the semiconductor equations, SIAM J. sci. comput., 17, 1, 118-132, (1996) · Zbl 0845.35122
[8] T. Clees, AMG strategies for PDE Systems with applications in industrial semiconductor simulation, Ph.D. Thesis, Universität zu Köln, 2005.
[9] Molenaar, J.; Hemker, P.W., A multigrid approach for the solution of the 2D semiconductor equations, Impact comput. sci. eng., 2, 219-243, (1990) · Zbl 0717.65107
[10] Knoll, D.A.; Keyes, D.E., Jacobian-free newton – krylov methods: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[11] Lin, P.T.; Sala, M.; Shadid, J.N.; Tuminaro, R.S., Performance of fully-coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport, Int. J. numer. meth. eng., 67, 2, 208-225, (2006) · Zbl 1110.76315
[12] Sala, M.; Shadid, J.N.; Tuminaro, R.S., An improved convergence bound for aggregation-based domain decomposition preconditioners, SIAM J. matrix anal., 27, 3, 744-756, (2006) · Zbl 1105.65116
[13] Shadid, J.N.; Tuminaro, R.S.; Devine, K.D.; Hennigan, G.L.; Lin, P.T., Performance of fully-coupled domain decomposition preconditioners for finite element transport/reaction simulations, J. comput. phys., 205, 1, 24-47, (2005) · Zbl 1087.76069
[14] Sala, M.; Lin, P.; Tuminaro, R.; Shadid, J., Algebraic multilevel preconditioners for nonsymmetric PDEs on stretched grids, (), 741-748
[15] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 179-196, (1996) · Zbl 0851.65087
[16] Vaněk, P.; Brezina, M.; Mandel, J., Convergence of algebraic multigrid based on smoothed aggregation, Numer. math., 88, 559-579, (2001) · Zbl 0992.65139
[17] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Technical Report 95-064, Department of Computer Science, University of Minnesota, 1995. · Zbl 0918.68073
[18] G. Karypis, V. Kumar, ParMETIS: parallel graph partitioning and sparse matrix ordering library, Technical Report 97-060, Department of Computer Science, University of Minnesota, 1997.
[19] De Zeeuw, P.M., Nonlinear multigrid applied to a one-dimensional stationary semiconductor model, SIAM J. sci. stat. comput., 13, 2, 512-530, (1992) · Zbl 0748.65087
[20] R.E. Bank, H.D. Mittelmann, Continuation and multi-grid for nonlinear elliptic systems, in: W. Hackbusch, U. Trottenberg (Eds.), Multigrid Methods II Proceedings of the 2nd European Conference on Multigrid Methods, Lecture Notes in Mathematics, vol. 2, Springer-Verlag, 1986, pp. 23-37. · Zbl 0605.65066
[21] Hughes, T.J.R.; Brooks, A., A theoretical framework for petrov – galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, (), pp. 47-65
[22] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. meth. appl. mech. eng., 54, 341-355, (1986) · Zbl 0622.76074
[23] F. Shakib, Finite element analysis of the compressible Euler and Navier-Stokes equations, Ph.D. Thesis, Division of Applied Mathematics, Stanford University, 1989.
[24] Sharma, M.; Carey, G.F., Semiconductor device simulation using adaptive refinement and flux upwinding, IEEE trans. computer-aided des., 8, 6, 590-598, (1989)
[25] G.F. Carey, A.L. Pardhanani, S.W. Bova, Advanced numerical methods and software approaches for semiconductor device simulation, Technical Report SAND2000-0763J, Sandia National Laboratories, 2000.
[26] Codina, R., Comparison of some finite element methods for solving the diffusion – convection-reaction equations, Comput. meth. appl. mech. eng., 156, 185-210, (1998) · Zbl 0959.76040
[27] Donea, J.; Huerta, A., Finite element methods for flow problems, (2003), John Wiley & Sons Ltd.
[28] J.N. Shadid, G.L. Hennigan, P.T. Lin, R.J. Hoekstra, Performance of stabilized finite element methods for solution of the drift-diffusion equations of semiconductor modeling, in preparation. · Zbl 1175.82077
[29] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III.the generalized streamline operator for multidimensional advective – diffusive systems, Comput. meth. appl. mech. eng., 58, 305-328, (1986) · Zbl 0622.76075
[30] Brown, P.N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. sci. stat. comput., 11, 3, 450-481, (1990) · Zbl 0708.65049
[31] Shadid, J.N., A fully-coupled newton – krylov solution method for parallel unstructured finite element fluid flow, heat and mass transfer simulations, Int. J. CFD, 12, 199-211, (1999) · Zbl 0969.76049
[32] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042
[33] Greenbaum, A., Iterative methods for solving linear systems, (1987), SIAM Philadelphia, PA, USA
[34] Eisenstat, S.C.; Walker, H.F., Globally convergent inexact Newton methods, SIAM J. optim., 4, 393-422, (1994) · Zbl 0814.65049
[35] Smith, B.; Bjorstad, P.; Gropp, W., Domain decomposition: parallel multilevel methods for elliptic partial differential equations, (1996), Cambridge University Press · Zbl 0857.65126
[36] Quarteroni, A.; Valli, A., Decomposition methods for partial differential equations, (1999), Oxford University Press · Zbl 0931.65118
[37] Cai, X.-C.; Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. sci. comput., 21, 792-797, (1999) · Zbl 0944.65031
[38] R.S. Tuminaro, M. Heroux, S.A. Hutchinson, J.N. Shadid, Aztec user’s guide – version 2.1, Technical Report SAND99-8801J, Sandia National Laboratories, Albuquerque NM, 87185, Nov. 1999.
[39] M. Dryja, O.B. Widlund, Towards a unified theory of domain decomposition algorithms for elliptic problems, in: T.F. Chan, R. Glowinski, J.Périaux, O. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1990, pp. 3-21. · Zbl 0719.65084
[40] Xu, J., Iterative methods by space decomposition and subspace correction: a unifying approach, SIAM rev., 34, 4, 581-613, (1992) · Zbl 0788.65037
[41] Dendy, J., Black box multigrid for nonsymmetric problems, Appl. math. comput., 13, 261-283, (1983) · Zbl 0533.65063
[42] Sala, M.; Tuminaro, R.S., A new petrov – galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. sci. stat., 31, 143-166, (2008) · Zbl 1183.76673
[43] R. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in: J. Donnelley (Ed.), SuperComputing 2000 Proceedings, 2000.
[44] Kim, H.H.; Xu, J.C.; Zikatanov, L., A multigrid method based on graph matching for convection – diffusion equations, Numer. linear algebra appl., 10, 1-2, 181-195, (2003) · Zbl 1071.65167
[45] Axelsson, O., Iterative solution methods, (1994), Cambridge University Press Cambridge · Zbl 0795.65014
[46] Varga, R.S., Matrix iterative analysis, (1962), Prentice-Hall Englewood Hills, NJ · Zbl 0133.08602
[47] B. Hendrickson, R. Leland, The Chaco user’s guide-version 1.0, Technical Report SAND93-2339, Sandia National Laboratories, Albuquerque NM, 87185, 1993.
[48] M. Sala, M. Heroux, Robust algebraic preconditioners with IFPACK 3.0, Technical Report SAND2005-0662, Sandia National Laboratories, 2005.
[49] M. Heroux, AztecOO user guide, Technical Report SAND2007-3796, Sandia National Laboratories, 2007.
[50] Davis, T.A., Direct methods for sparse linear systems, (2006), SIAM · Zbl 1119.65021
[51] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, M.G. Sala, ML 5.0 smoothed aggregation user’s guide, Technical Report SAND2006-2649, Sandia National Laboratories, 2006.
[52] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An overview of trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003. · Zbl 1136.65354
[53] G.L. Hennigan, R.J. Hoekstra, J.P. Castro, D.A. Fixel, J.N. Shadid, Simulation of neutron radiation damage in silicon semiconductor devices, Technical Report SAND2007-7157, Sandia National Laboratories, 2007.
[54] Mayergoyz, I.D., Solution of the nonlinear Poisson equation of semiconductor device theory, J. appl. phys, 59, 1, 195-199, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.