×

zbMATH — the first resource for mathematics

LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks. (English) Zbl 1175.90085
Summary: Complex networks are widespread in real-world systems of engineering, physics, biology, and sociology. This paper is concerned with the problem of synchronization for stochastic discrete-time drive-response networks. A dynamic feedback controller has been proposed to achieve the goal of the paper. Then, based on the Lyapunov second method and LMI (linear matrix inequality) optimization approach, a delay-independent stability criterion is established that guarantees the asymptotical mean-square synchronization of two identical delayed networks with stochastic disturbances. The criterion is expressed in terms of LMIs, which can be easily solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the proposed method.

MSC:
90B15 Stochastic network models in operations research
Software:
LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002) · Zbl 1007.34044
[2] Wang, X., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12, 187–192 (2002) · doi:10.1142/S0218127402004292
[3] Rangarajan, G., Ding, M.: Stability of synchronization chaos in coupled dynamical systems. Phys. Lett. A 296, 204–209 (2002) · Zbl 0994.37026 · doi:10.1016/S0375-9601(02)00051-8
[4] Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst.-II 53, 23–33 (2006) · doi:10.1109/TCSII.2005.854314
[5] Lu, J.H., Yu, X.H., Chen, G., Cheng, D.Z.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst.-I 51, 787–796 (2004) · Zbl 1374.34220 · doi:10.1109/TCSI.2004.823672
[6] Park, J.H.: A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos Solitons Fractals 29, 446–453 (2006) · Zbl 1121.92006 · doi:10.1016/j.chaos.2005.08.018
[7] Park, J.H., Won, S.: Asymptotic stability of neutral systems with multiple delays. J. Optim. Theory Appl. 103, 183–200 (1999) · Zbl 0947.65088 · doi:10.1023/A:1021781602182
[8] Park, J.H.: Convex optimization approach to dynamic output feedback control for delay differential systems of neutral type. J. Optim. Theory Appl. 127, 411–423 (2005) · Zbl 1113.93048 · doi:10.1007/s10957-005-6552-7
[9] Park, J.H.: Robust stabilization for dynamic systems with multiple time-varying delays and nonlinear uncertainties. J. Optim. Theory Appl. 108, 155–174 (2001) · Zbl 0981.93069 · doi:10.1023/A:1026470106976
[10] Lu, J., Cao, J.: Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53, 107–115 (2008) · Zbl 1182.92007 · doi:10.1007/s11071-007-9299-x
[11] Li, C.G., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–278 (2004) · doi:10.1016/j.physa.2004.05.058
[12] Zhi, L.: Global synchronization of general delayed dynamical networks. Chin. Phys. Lett. 24, 1869–1872 (2007) · doi:10.1088/0256-307X/24/7/022
[13] Wang, Z., Shu, H., Fang, J., Liu, X.: Robust stability for stochastic Hopfield neural networks with time delay. Nonlinear Anal.: Real World. Appl. 7, 1119–1128 (2006) · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[14] Wan, L., Sun, J.: Mean square exponential stability of stochastic delayed Hopfield neural networks. Phys. Lett. A 343, 206–318 (2005) · Zbl 1194.37186 · doi:10.1016/j.physleta.2005.06.024
[15] Wan, L., Zhou, Q.: Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays. Phys. Lett. A 370, 423–432 (2007) · doi:10.1016/j.physleta.2007.05.095
[16] Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53, 153–165 (2008) · Zbl 1172.92002 · doi:10.1007/s11071-007-9303-5
[17] Park, J.H., Lee, S.G.: An LMI approach to dynamic controller design for uncertain discrete-time system. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E85A, 1176–1180 (2002)
[18] Park, J.H.: On dynamic output feedback guaranteed cost control of uncertain discrete-delay systems: An LMI optimization approach. J. Optim. Theory Appl. 121, 147–162 (2004) · Zbl 1061.93079 · doi:10.1023/B:JOTA.0000026135.99294.32
[19] Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) · Zbl 0816.93004
[20] Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output feedback control via LMI optimization. IEEE Trans. Autom. Control 42, 896–911 (1997) · Zbl 0883.93024 · doi:10.1109/9.599969
[21] Gahinet, P., Nemirovskii, A., Laub, A., Chilali, M.: LMI Control Toolbox. MathWorks, Matick (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.