Global stability and optimisation of a general impulsive biological control model. (English) Zbl 1175.92070

Summary: An impulsive model of augmentative biological control consisting of a general continuous predator-prey model by ordinary differential equations, i.e., a meta-model augmented by a discrete part describing periodic introductions of predators is considered. The existence of an invariant periodic solution that corresponds to prey eradication is shown and a condition ensuring its global asymptotic stability is given. An optimisation problem related to the preemptive use of augmentative biological control is then considered. It is assumed that the per time unit budget of biological control (i.e., the number of predators to be released) is fixed and the best deployment of this budget is sought in terms of release frequency. The cost function to be minimised is the time needed to reduce an unforeseen prey (pest) invasion occurring at a worst time instant under some harmless level.
The analysis shows that the optimisation problem admits a countable infinite number of solutions. An argumentation considering the required robustness of the optimisation result with respect to the invasive prey population level and to the model parameters is then conducted. It is shown that the cost function is decreasing in the predator release frequency so that the best deployment of the biocontrol agents is to carry out as frequent introductions as possible.


92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
34H05 Control problems involving ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
49N90 Applications of optimal control and differential games
Full Text: DOI arXiv


[1] De Courcy Williams, M.E., Biological control of thrips on ornamental crops: interactions between the predatory mite neoseiulus cucumeris (acari: phytoseiidae) and western flower thrips frankliniella occidentalis (thysanoptera: thripidae) on cyclamen, Biocontrol science and technology, 11, 1, 41, (2001)
[2] Dong, L.; Chen, L.; Sun, L., Optimal harvesting policies for periodic Gompertz systems, Nonlinear analysis: real world applications, 8, 2, 572, (2007) · Zbl 1152.34333
[3] D’Onofrio, A., Stability properties of pulse vaccination strategy in SEIR epidemic model, Mathematical biosciences, 179, 1, 57, (2002) · Zbl 0991.92025
[4] D’Onofrio, A.; Gandolfi, A., Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by hahnfeldt et al. (1999), Mathematical biosciences, 191, 2, 159, (2004) · Zbl 1050.92039
[5] D’Onofrio, A., A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208, 3-4, 220, (2005) · Zbl 1087.34028
[6] D’Onofrio, A., Tumorimmune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy, Mathematical models and methods in applied sciences, 16, 1375, (2006) · Zbl 1094.92040
[7] D’Onofrio, A., Metamodeling tumorimmune system interaction tumor evasion and immunotherapy, Mathematical and computer modelling, 47, 5-6, 614, (2008) · Zbl 1148.92026
[8] Ebenhoh, W., Coexistence of an unlimited number of algal species in a model system, Theoretical population biology, 34, 130-144, (1988) · Zbl 0648.92023
[9] Ehler, L.E.; Long, R.F.; Kinsey, M.G.; Kelley, S.K., Potential for augmentative biological control of black Bean aphid in California sugarbeet, Entomophaga, 42, 1-2, 241, (1997)
[10] Eilenberg, J.; Hajek, A.; Lomer, C., Suggestions for unifying the terminology in biological control, Biocontrol, 46, 4, 387, (2001)
[11] K. Erdlenbruch, A. Jean-Marie, M. Tidball, M. Moreaux, Cyclical versus non-cyclical harvesting policies in renewable resource economics, in: Proc. of the 15th EAERE Annual Conference, Thessaloniki, Greece, 2007.
[12] Fenton, A.; Gwynn, R.L.; Gupta, A.; Norman, R.; Fairbairn, J.P.; Hudson, P.J., Optimal application strategies for entomopathogenic nematodes: integrating theoretical and empirical approaches, Journal of applied ecology, 39, 3, 481, (2002)
[13] Fenton, A.; Norman, R.; Fairbairn, J.P.; Hudson, P.J., Evaluating the efficacy of entomopathogenic nematodes for the biological control of crop pests: a nonequilibrium approach, American naturalist, 158, 4, 408, (2001)
[14] Funasaki, E.; Kot, M., Invasion and chaos in a periodically pulsed mass-action chemostat, Theoretical population biology, 44, 2, 203, (1993) · Zbl 0782.92020
[15] Grevstad, F.S., Factors influencing the chance of population establishment: implications for release strategies in biocontrol, Ecological applications, 9, 4, 1439, (1999)
[16] Hui, J.; Chen, L.S., Impulsive vaccination of SIR epidemic models with nonlinear incidence rates, Discrete and continuous dynamical systems – series B, 4, 3, 595, (2004) · Zbl 1100.92040
[17] Hulshof, J.; Ketoja, E.; Vanninen, I., Life history characteristics of frankliniella occidentalis on cucumber leaves with and without supplemental food, Entomologia experimentalis et applicata, 108, 1, 19, (2003)
[18] Jacobson, R.J.; Chandler, D.; Fenlon, J.; Russell, K.M., Compatibility of beauveria bassiana (balsamo) vuillemin with amblyseius cucumeris oudemans (acarina: phytoseiidae) to control frankliniella occidentalis pergande (thysanoptera: thripidae) on cucumber plants, Biocontrol science and technology, 11, 3, 391, (2001)
[19] Jacobson, R.J.; Croft, P.; Fenlon, J., Suppressing establishment of frankliniella occidentalis pergande (thysanoptera: thripidae) in cucumber crops by prophylactic release of amblyseius cucumeris oudemans (acarina: phytoseiidae), Biocontrol science and technology, 11, 1, 27, (2001)
[20] Lakmeche, A.; Arino, O., Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dynamics of continuous discrete and impulsive systems, 7, 2, 265, (2000) · Zbl 1011.34031
[21] Liu, B.; Chen, L.S.; Zhang, Y.J., The dynamics of a prey-dependent consumption model concerning impulsive control strategy, Applied mathematics and computation, 169, 1, 305, (2005) · Zbl 1074.92042
[22] Liu, B.; Zhang, Y.J.; Chen, L.S., Dynamic complexities of a Holling I predator – prey model concerning periodic biological and chemical control, Chaos, solitons & fractals, 22, 1, 123, (2004) · Zbl 1058.92047
[23] Liu, B.; Zhang, Y.J.; Chen, L.S., The dynamical behaviors of a lotka – volterra predator – prey model concerning integrated pest management, Nonlinear analysis – real world applications, 6, 2, 227, (2005) · Zbl 1082.34039
[24] Liu, S.Q.; Chen, L.S.; Agarwal, R., Recent progress on stage-structured population dynamics, Mathematical and computer modelling, 36, 11-13, 1319, (2002) · Zbl 1077.92516
[25] Liu, X.N.; Chen, L.S., Complex dynamics of Holling type II lotka – volterra predator – prey system with impulsive perturbations on the predator, Chaos, solitons & fractals, 16, 2, 311, (2003) · Zbl 1085.34529
[26] Loehle, C., Control theory and the management of ecosystems, Journal of applied ecology, 43, 5, 957, (2006)
[27] L. Mailleret, F. Grognard, Optimal release policy for prophylactic biological control, in: Positive systems. Lecture Notes in Control and Information Sciences, Springer, Berlin, vol. 341, 2006, p. 89. · Zbl 1110.92051
[28] L. Mailleret, V. Lemesle, A note on semi-discrete modelling in the life sciences, Philosophical Transactions of the Royal Society - Series A 367 (1908) (2009), in press. · Zbl 1192.37119
[29] Meng, X.Z.; Song, Z.T.; Chen, L.S., A new mathematical model for optimal control strategies of integrated pest management, Journal of biological systems, 15, 2, 219, (2007) · Zbl 1279.92053
[30] Murdoch, W.W.; Chesson, J.; Chesson, P.L., Biological control in theory and practice, The American naturalist, 125, 3, 344, (1985)
[31] Negi, K.; Gakkhar, S., Dynamics in a beddington – deangelis prey – predator system with impulsive harvesting, Ecological modelling, 206, 3-4, 421, (2007)
[32] Nundloll, S.; Mailleret, L.; Grognard, F., The effects of partial crop harvest on biological pest control, Rocky mountain journal of mathematics, 38, 5, 1633, (2008) · Zbl 1254.92088
[33] S. Nundloll, L. Mailleret, F. Grognard, Two models of interfering predators in impulsive biological control, Journal of Biological Dynamics (in press). doi:10.1080/17513750902968779. · Zbl 1315.92066
[34] S. Nundloll, L. Mailleret, F. Grognard, Impulsive biological control with intra-predatory interference: global stability and convergence, Bulletin of Mathematical Biology (submitted for publication). · Zbl 1315.92066
[35] Pugliese, A.; Gandolfi, A., A simple model of pathogen-immune dynamics including specific and non-specific immunity, Mathematical biosciences, 214, 1-2, 73, (2008) · Zbl 1143.92022
[36] Roderick, G.K.; Navajas, M., Genes in new environments: genetics and evolution in biological control, Nature reviews genetics, 4, 11, 889, (2003)
[37] Shulgin, B.; Stone, L.; Agur, Z., Pulse vaccination strategy in the SIR epidemic model, Bulletin of mathematical biology, 60, 6, 1123, (1998) · Zbl 0941.92026
[38] Skirvin, D.J.; De Courcy Williams, M.E.; Fenlon, J.S.; Sunderland, K.D., Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops, Journal of applied ecology, 39, 3, 469, (2002)
[39] Stern, V.M.; Smith, R.F.; van den Bosch, R.; Hagen, K.S., The integrated control concept, Hilgardia, 29, 81, (1959)
[40] Tang, S.; Cheke, R.A.; Xiao, Y., Optimal impulsive harvesting on non-autonomous beverton – holt difference equations, Nonlinear analysis, 65, 12, 2311, (2006) · Zbl 1119.39011
[41] Tang, S.Y.; Chen, L.S., Multiple attractors in stage-structured population models with birth pulses, Bulletin of mathematical biology, 65, 3, 479, (2003) · Zbl 1334.92371
[42] Tang, S.; Cheke, R.A., Models for integrated pest control and their biological implications, Mathematical biosciences, 215, 115, (2008) · Zbl 1156.92046
[43] Xiao, Y.; Cheng, D.; Qin, H., Optimal impulsive control in periodic ecosystem, Systems & control letters, 55, 7, 558, (2006) · Zbl 1129.49308
[44] Yano, E., A simulation study of population interaction between the greenhouse whitefly trialeurodes vaporarium westwood (homoptera: aleyrodidae) and the parasitoid encarsia formosa gahan (hymenoptera: aphelinidae). I. description of the model, Researches on population ecology, 31, 73-88, (1989)
[45] Yano, E., A simulation study of population interaction between the greenhouse whitefly trialeurodes vaporarium westwood (homoptera: aleyrodidae) and the parasitoid encarsia formosa gahan (hymenoptera: aphelinidae). II. simulation analysis of population dynamics and strategy of biological control, Researches on population ecology, 31, 89, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.