×

zbMATH — the first resource for mathematics

Passivity-based sliding mode control of uncertain singular time-delay systems. (English) Zbl 1175.93065
Summary: The problem of Sliding Mode Control (SMC) with passivity of a class of uncertain nonlinear singular time-delay systems is studied. An integral-type switching surface function is designed by taking the singular matrix into account, thus the resulting sliding mode dynamics is a full-order uncertain singular time-delay system. By introducing some slack matrices, a delay-dependent sufficient condition is proposed in terms of linear matrix inequality, which guarantees the sliding mode dynamics to be generalized quadratically stable and robustly passive. The passification solvability condition is then established. Moreover, a SMC law and an adaptive SMC law are synthesized to drive the system trajectories onto the predefined switching surface in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory.

MSC:
93B35 Sensitivity (robustness)
93B12 Variable structure systems
93D99 Stability of control systems
93C10 Nonlinear systems in control theory
93C41 Control/observation systems with incomplete information
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boukas, E.-K., Stabilization of stochastic singular nonlinear hybrid systems, Nonlinear analysis, 64, 217-228, (2006) · Zbl 1090.93048
[2] Calcev, G.; Gorez, R.; De Neyer, M., Passivity approach to fuzzy control systems, Automatica, 34, 339-344, (1998) · Zbl 0919.93047
[3] Chen, F., Zhang, W., & Wang, W. (2006). Robust passive control for uncertain singular system with state delay. In Proceedings of the 2006 American control conference (pp. 1535-1538)
[4] Chou, C.-H.; Cheng, C.-C., Design of adaptive variable structure controllers for perturbed time-varying state-delay systems, Journal of the franklin institute, 338, 35-46, (2001) · Zbl 0966.93101
[5] Dai, L., Singular control systems, ()
[6] Dong, X.-Z.; Zhang, Q.-L., Robust passive control for singular systems with time-varying uncertainties, Kongzhi lilun yu yinyong/control theory and applications, 21, 517-520, (2004) · Zbl 1138.93344
[7] Gao, H.; Chen, T.; Chai, T., Passivity and passification for networked control systems, SIAM journal on control and optimization, 46, 1299-1322, (2007) · Zbl 1140.93425
[8] Gao, H.; Wang, C., Comments and further results on: A descriptor system approach to \(\mathcal{H}_\infty\) control of linear time-delay systems, IEEE transactions on automatic control, 48, 520-525, (2003) · Zbl 1364.93211
[9] Khargonekar, P.P.; Petersen, I.R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and \(\mathcal{H}_\infty\) control theory, IEEE transactions on automatic control, 35, 356-361, (1990) · Zbl 0707.93060
[10] Lam, J.; Shu, Z.; Xu, S.; Boukas, E.-K., Robust \(\mathcal{H}_\infty\) control of descriptor discrete-time Markovian jump systems, International journal of control, 80, 374-385, (2007) · Zbl 1120.93057
[11] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B., Dissipative systems analysis and control: theory and applications, (2000), Springer-Verlag London · Zbl 0958.93002
[12] Mahmoud, M.S.; Ismail, A., Passivity and passification of time-delay systems, Journal of mathematical analysis and applications, 292, 247-258, (2004) · Zbl 1084.93014
[13] Niculescu, S.-I.; Lozano, R., On the passivity of linear delay systems, IEEE transactions on automatic control, 46, 460-464, (2001) · Zbl 1056.93610
[14] Niu, Y.; Ho, D.W.C.; Lam, J., Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica, 41, 873-880, (2005) · Zbl 1093.93027
[15] Niu, Y.; Ho, D.W.C.; Wang, X., Sliding mode control for ItĂ´ stochastic systems with Markovian switching, Automatica, 43, 1784-1790, (2007) · Zbl 1119.93063
[16] Perruquetti, W.; Barbot, J.P., Sliding mode control in engineering, (2002), Marcel Decker New York
[17] Shi, P.; Boukas, E.K.; Agarwal, R.K., Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay, IEEE transactions on automatic control, 44, 2139-2144, (1999) · Zbl 1078.93575
[18] Shi, P.; Xia, Y.; Liu, G.P.; Rees, D., On designing of sliding-mode control for stochastic jump systems, IEEE transactions on automatic control, 51, 97-103, (2006) · Zbl 1366.93682
[19] Utkin, V., Sliding modes in control optimization, (1992), Springer-Verlag Berlin · Zbl 0748.93044
[20] Vidyasagar, M., Nonlinear systems analysis, (1993), Prentice-Hall Englewood Cliffs, NJ · Zbl 0900.93132
[21] Wang, Z.; Qiao, H.; Burnham, K.J., On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters, IEEE transactions on automatic control, 47, 640-646, (2002) · Zbl 1364.93672
[22] Wu, L; Gao, H., Sliding mode control of two-dimensional systems in Roesser model, IET control theory and applications, 2, 352-364, (2008)
[23] Wu, L.; Wang, C.; Zeng, Q., Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems, Journal of the franklin institute, 345, 233-253, (2008) · Zbl 1167.93326
[24] Xia, Y.; Jia, Y., Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE transactions on automatic control, 48, 1086-1092, (2003) · Zbl 1364.93608
[25] Xie, L.; Fu, M.; Li, H., Passivity analysis and passification for uncertain signal processing systems, IEEE transactions on signal processing, 46, 2394-2403, (1998)
[26] Xu, S.; Lam, J., Robust control and filtering of singular systems, (2006), Springer Berlin · Zbl 1114.93005
[27] Xu, S.; Lam, J.; Yang, C., Robust \(\mathcal{H}_\infty\) control for uncertain singular systems with state delay, International journal of robust and nonlinear control, 13, 1213-1223, (2003) · Zbl 1039.93019
[28] Xu, S.; Van Dooren, P.; Stefan, R.; Lam, J., Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE transactions on automatic control, 47, 1122-1128, (2002) · Zbl 1364.93723
[29] Yan, J.-J., Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs, International journal of robust and nonlinear control, 13, 519-532, (2003) · Zbl 1023.93015
[30] Zhu, S.; Zhang, C.; Cheng, Z.; Feng, J., Delay-dependent robust stability criteria for two classes of uncertain singular time-delay systems, IEEE transactions on automatic control, 52, 880-885, (2007) · Zbl 1366.93478
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.