×

zbMATH — the first resource for mathematics

Guaranteed energy error bounds for the Poisson equation using a flux-free approach: solving the local problems in subdomains. (English) Zbl 1176.65127
Summary: A method to compute guaranteed upper bounds for the energy norm of the exact error in the finite element solution of the Poisson equation is presented. The bounds are guaranteed for any finite element mesh however coarse it may be, not just in the asymptotic regime. The bounds are constructed by employing a subdomain-based a posteriori error estimate which yields self-equilibrated residual loads in stars (patches of elements). The proposed approach is an alternative to standard equilibrated residual methods providing sharper bounds. The use of a flux-free error estimator improves the effectivities of the upper bounds for the energy while retaining the certainty of the bounds.

MSC:
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Parés, Exact bounds for linear outputs of the advection-diffusion-reaction equation using flux-free error estimates, SIAM Journal on Scientific Computing · Zbl 1195.65157
[2] GeradinMG (ed.). In B. M. Fraeijs de Veubeke Memorial Volume of Selected Papers. Martinus Nijhoff Publishers: The Hague, 1980. Solid Mechanics Archives, Special Memorial Vol.
[3] Kelly, The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method, International Journal for Numerical Methods in Engineering 20 (8) pp 1491– (1984) · Zbl 0575.65100
[4] Ladevèze, Error estimate procedure in the finite element method and applications, SIAM Journal on Numerical Analysis 20 (3) pp 485– (1983)
[5] Ainsworth, A Posteriori Error Estimation in Finite Element Analysis (2000) · Zbl 1008.65076 · doi:10.1002/9781118032824
[6] Babuška, The Finite Element Method and its Reliability (2001)
[7] Ladevèze, Mastering Calculations in Linear and Nonlinear Mechanics (2005) · Zbl 1077.74001
[8] Ladevèze, A general method for recovering equilibrating element tractions, Computer Methods in Applied Mechanics and Engineering 137 (41) pp 111– (1996) · Zbl 0886.73065
[9] Maunder, A posteriori error estimators related to equilibrium defaults of finite element solutions for elastostatic problems, Finite Elements in Analysis and Design 26 (3) pp 171– (1997) · Zbl 0917.73074
[10] Almeida Pereira, Adaptive methods for hybrid equilibrium finite element models, Computer Methods in Applied Mechanics and Engineering 176 (1-4) pp 19– (1999) · Zbl 0991.74072
[11] Sauer-Budge, Computing bounds for linear functionals of exact weak solutions to Poisson’s equation, SIAM Journal on Numerical Analysis 42 (4) pp 1610– (2004) · Zbl 1082.65113
[12] Sauer-Budge, Computing bounds for linear functionals of exact weak solutions to the advection-diffusion-reaction equation, SIAM Journal on Scientific Computing 26 (2) pp 636– (2004) · Zbl 1082.65113
[13] Parés, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations, Computer Methods in Applied Mechanics and Engineering 195 (4-6) pp 406– (2006) · Zbl 1193.74041
[14] Xuan, Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity, Computer Methods in Applied Mechanics and Engineering 195 (46) pp 430– (2006) · Zbl 1193.74042
[15] Parés, Bounds of functional outputs for parabolic problems. Part I: exact bounds of the discontinuous Galerkin time discretization, Computer Methods in Applied Mechanics and Engineering 197 (19-20) pp 1641– (2008) · Zbl 1194.65109 · doi:10.1016/j.cma.2007.08.025
[16] Parés, Bounds of functional outputs for parabolic problems. Part II: bounds of the exact solution, Computer Methods in Applied Mechanics and Engineering 197 (19-20) pp 1661– (2008) · Zbl 1194.65110 · doi:10.1016/j.cma.2007.08.024
[17] Vejchodský, Guaranteed and locally computable a posteriori error estimate, IMA Journal of Numerical Analysis 26 (3) pp 525– (2006) · Zbl 1096.65112
[18] Parés, Subdomain-based flux-free a posteriori error estimators, Computer Methods in Applied Mechanics and Engineering 195 (4-6) pp 297– (2006) · Zbl 1193.65191
[19] Díez, Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates, International Journal for Numerical Methods in Engineering 56 (10) pp 1465– (2003) · Zbl 1052.65105
[20] Cottereau, Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method, Computational Mechanics · Zbl 1297.74116
[21] Moitinho de Almeida JP, Maunder EAW. A technique for recovery of equilibrium on star patches via a partition of unity. Proceedings of the 5th ECCOMAS and 8th World Congress on Computational Mechanics, Venice, 2008.
[22] Machiels, A ’flux-free’ nodal Neumann subproblem approach to output bounds for partial differential equations, Comptes rendus de l’Acadmie des sciences Paris, Série I Mathematique 330 (3) pp 249– (2000)
[23] Carstensen, Fully reliable localized error control in the FEM, SIAM Journal on Scientific Computing 21 (4) pp 1465– (199900) · Zbl 0951.74057
[24] Morin, Local problems on stars: a posteriori error estimators, convergence, and performance, Mathematics of Computation 72 (243) pp 1067– (2003) · Zbl 1019.65083
[25] Křížek, Conforming equilibrium finite element methods for some elliptic plane problems, RAIRO Analyse Numérique 17 (1) pp 35– (1983)
[26] Oden, Local and pollution error estimation for finite element approximations of elliptic boundary value problems, Journal of Computational and Applied Mathematics 74 (1-2) pp 245– (1996) · Zbl 0871.65094
[27] Repin, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions, Journal of Computational and Applied Mathematics 164/165 pp 601– (2004) · Zbl 1038.65114
[28] Carstensen, Convergence analysis of an adaptive nonconforming finite element method, Numerische Mathematik 103 (2) pp 251– (2006) · Zbl 1101.65102
[29] Paraschivoiu, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Computer Methods in Applied Mechanics and Engineering 150 (1-4) pp 289– (1997) · Zbl 0907.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.