×

zbMATH — the first resource for mathematics

Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrödinger-KdV equation. (English) Zbl 1177.65152
Summary: We apply the homotopy analysis method (HAM) and the homotopy perturbation method (HPM) to obtain approximate analytical solutions of the coupled Schrödinger-Korteweg-de Vries (KdV) equation. The results show that HAM is a very efficient method and that HPM is a special case of HAM.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
35Q55 NLS equations (nonlinear Schrödinger equations)
Software:
BVPh
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 370, 437–440 (2007) · Zbl 1209.65105
[2] Fan, E., Hon, Y.C.: Applications of extended tanh method to ’special’ types of nonlinear equations. Appl. Math. Comput. 141, 351–358 (2003) · Zbl 1027.65128
[3] Kaya, D., El-Sayed, S.M.: On the solution of the coupled Schrödinger-KdV equation by the decomposition method. Phys. Lett. A 313, 82–88 (2003) · Zbl 1040.35099
[4] Abdou, M.A., Soliman, A.A.: New applications of variational iteration method. Physica D 211, 1–8 (2005) · Zbl 1084.35539
[5] Ray, S.: An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrodinger equation. Commun. Nonlinear Sci. Numer. Simul. 13, 1311–1317 (2008) · Zbl 1221.65283
[6] He, J.-H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350, 87–88 (2006) · Zbl 1195.65207
[7] He, J.-H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26, 695–700 (2005) · Zbl 1072.35502
[8] Inc, M., Ugurlu, Y.: Numerical simulation of the regularized long wave equation by He’s homotopy perturbation method. Phys. Lett. A 369, 173–179 (2007) · Zbl 1209.65110
[9] Momani, S., Noor, M.: Numerical comparison of methods for solving a special fourth-order boundary value problem. Appl. Math. Comput. 191, 218–224 (2007) · Zbl 1193.65135
[10] Sweilam, N.H.: Variational iteration method for solving cubic nonlinear Schrodinger equation. J. Comput. Appl. Math. 207, 155–163 (2007) · Zbl 1119.65098
[11] Khuri, S.A.: A new approach to the cubic Schrodinger equation: an application of the decomposition technique. Appl. Math. Comput. 97, 251–254 (1998) · Zbl 0940.35187
[12] Liao, S.J.: Homotopy analysis method and its application. PhD dissertation, Shanghai Jiao Tong University (1992)
[13] Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)
[14] Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007) · Zbl 1170.76307
[15] Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006) · Zbl 1236.80010
[16] Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005) · Zbl 1082.65534
[17] Hayat, T., Khan, M.: Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dyn. 42, 395–405 (2005) · Zbl 1094.76005
[18] Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13, 539–546 (2008) · Zbl 1132.34305
[19] Liao, S.J.: An explicit totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlinear Mech. 34, 759–778 (1999) · Zbl 1342.74180
[20] Liao, S.J.: On the homotopy anaylsis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004) · Zbl 1086.35005
[21] Alomari, A.K., Noorani, M.S.M., Nazar, R.: Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. (2008). doi: 10.1016/j.cnsns.2008.01.008 · Zbl 1154.35438
[22] Alomari, A.K., Noorani, M.S.M., Nazar, R.: On the homotopy analysis method for the exact solutions of Helmholtz equation. Chaos Solitons Fractals (2008). doi: 10.1016/j.chaos.2008.07.038 · Zbl 1154.35438
[23] Alomari, A.K., Noorani, M.S.M., Nazar, R.: Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system. Commun. Nonlinear Sci. Numer. Simul. (2008). doi: 10.1016/j.cnsns.2008.06.011 · Zbl 1221.65192
[24] Alomari, A.K., Noorani, M.S.M., Nazar, R.: Solutions of heat-like and wave-like equations with variable coefficients by means of the homotopy analysis method. Chin. Phys. Lett. 25, 589–592 (2008)
[25] Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R.: Series solutions of systems of nonlinear fractional differential equations. Acta Appl. Math. (2008). doi: 10.1007/s10440-008-9271-x · Zbl 1187.34007
[26] Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 239–263 (2006) · Zbl 1145.76352
[27] Allan, F.M., Syam, M.I.: On the analytic solution of non-homogeneous Blasius problem. J. Comput. Appl. Math. 182, 362–371 (2005) · Zbl 1071.65108
[28] Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007) · Zbl 1273.65156
[29] Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 2060–2070 (2008) · Zbl 1221.65194
[30] Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007) · Zbl 1170.76307
[31] Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007) · Zbl 1181.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.