×

zbMATH — the first resource for mathematics

Ricci flat rotating black branes with a conformally invariant Maxwell source. (English) Zbl 1177.83045
Summary: We consider Einstein gravity coupled to an \(U(1)\) gauge field for which the density is given by a power of the Maxwell Lagrangian. In \(d\)-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as \(d/4\). We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking-Page phase transition in spite of conformally invariant Maxwell field.

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
83C22 Einstein-Maxwell equations
83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena J.: Adv. Theor. Math. Phys. 2, 231 (1998)
[2] Witten E.: Adv. Theor. Math. Phys. 2, 253 (1998)
[3] Hawking S.W., Hunter C.J., Taylor-Robinson M.M.: Phys. Rev. D 59, 064005 (1999) · doi:10.1103/PhysRevD.59.064005
[4] Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y.: Phys. Rep. 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[5] Hennigson M., Skenderis K.: J. High Energy Phys. 7, 023 (1998) · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[6] Nojiri S., Odintsov S.D.: Phys. Lett. B 444, 92 (1998) · doi:10.1016/S0370-2693(98)01351-3
[7] Balasubramanian V., Kraus P.: Commun. Math. Phys. 208, 413 (1999) · Zbl 0946.83013 · doi:10.1007/s002200050764
[8] Nojiri S., Odintsov S.D., Ogushi S.: Phys. Rev. D 62, 124002 (2000) · doi:10.1103/PhysRevD.62.124002
[9] Cai R.G.: Phys. Rev. D 63, 124018 (2001) · doi:10.1103/PhysRevD.63.124018
[10] Dehghani M.H.: Phys. Rev. D 65, 124002 (2002) · doi:10.1103/PhysRevD.65.124002
[11] Dehghani M.H.: Phys. Rev. D 66, 044006 (2002) · doi:10.1103/PhysRevD.66.044006
[12] Ghezelbash A.M., Ida D., Mann R.B., Shiromizu T.: Phys. Lett. B 535, 315 (2002) · Zbl 0995.81133 · doi:10.1016/S0370-2693(02)01773-2
[13] Bailin D., Love A.: Rep. Prog. Phys. 50, 1087 (1987) · doi:10.1088/0034-4885/50/9/001
[14] Nieuwenhuizen P.V.: Phys. Rep. 68, 189 (1981) · doi:10.1016/0370-1573(81)90157-5
[15] Freund P.G.O., Rubin M.: Phys. Lett. B 97, 233 (1980) · doi:10.1016/0370-2693(80)90590-0
[16] Hassaine M.: J. Math. Phys. (N.Y.) 47, 033101 (2006) · Zbl 1111.83010 · doi:10.1063/1.2179050
[17] Thiemann T.: Nucl. Phys. B 436, 681 (1995) · Zbl 1052.83504 · doi:10.1016/0550-3213(94)00564-U
[18] Dehghani M.H., Khodam-Mohammadi A.: Phys. Rev. D 67, 084006 (2003) · doi:10.1103/PhysRevD.67.084006
[19] Horvat D., llijic S., Narancic Z.: Class. Quantum Grav. 22, 3817 (2005) · Zbl 1075.83519 · doi:10.1088/0264-9381/22/19/001
[20] Hassaine M., Martinez C.: Phys. Rev. D 75, 027502 (2007) · doi:10.1103/PhysRevD.75.027502
[21] Clement G.: Phys. Rev. D 57, 4885 (1998) · doi:10.1103/PhysRevD.57.4885
[22] Awad A.M., Johnson C.V.: Phys. Rev. D 63, 124023 (2001) · doi:10.1103/PhysRevD.63.124023
[23] Ida D., Uchida Y.: Phys. Rev. D 68, 104014 (2003) · doi:10.1103/PhysRevD.68.104014
[24] Gibbons G.W., Lu H., Page D.N., Pope C.N.: Phys. Rev. Lett. 93, 171102 (2004) · doi:10.1103/PhysRevLett.93.171102
[25] Cvetic M., Lu H., Page D.N., Pope C.N.: Phys. Rev. Lett. 95, 071101 (2005) · doi:10.1103/PhysRevLett.95.071101
[26] Gibbons G.W., Perry M.J., Pope C.N.: Class. Quantum Grav. 22, 1503 (2005) · Zbl 1068.83010 · doi:10.1088/0264-9381/22/9/002
[27] Carter B.M.N., Neupane I.P.: Phys. Rev. D 72, 043534 (2005) · doi:10.1103/PhysRevD.72.043534
[28] Aliev A.N.: Phys. Rev. D 74, 024011 (2006) · doi:10.1103/PhysRevD.74.024011
[29] Ishihara H., Kimura M., Matsuno K., Tomizawa S.: Phys. Rev. D 74, 047501 (2006) · doi:10.1103/PhysRevD.74.047501
[30] Kunz, J., Navarro-Lerida, F., Radu, E.: gr-qc/0702086
[31] Brihaye, Y., Delsate, T.: gr-qc/0703146
[32] Dehghani M.H., Hendi S.H., Sheykhi A., Rastegar Sedehi H.: JCAP 0702, 020 (2007)
[33] Dehghani M.H., Hendi S.H.: Int. J. Mod. Phys. D 16, 1829 (2007) · Zbl 1200.83096 · doi:10.1142/S0218271807011127
[34] Dehghani M.H., Sedehi H.R.: Phys. Rev. D 74, 124018 (2006) · doi:10.1103/PhysRevD.74.124018
[35] Hawking S.W., Page D.N.: Commun. Math. Phys. 87, 577 (1983) · doi:10.1007/BF01208266
[36] Cvetic M., Nojiri S., Odintsov S.D.: Nucl. Phys. B 628, 295 (2002) · Zbl 0992.83038 · doi:10.1016/S0550-3213(02)00075-5
[37] Birmingham D.: Class. Quantum Grav. 16, 1197 (1999) · Zbl 0933.83025 · doi:10.1088/0264-9381/16/4/009
[38] Brill D.R., Louko J., Peldan P.: Phys. Rev. D 56, 3600 (1997) · doi:10.1103/PhysRevD.56.3600
[39] Cai R.G., Soh K.S.: Phys. Rev. D 59, 044013 (1999) · doi:10.1103/PhysRevD.59.044013
[40] Chamblin A., Emparan R., Johnson C.V., Myers R.C.: Phys. Rev. D 60, 064018 (1999) · doi:10.1103/PhysRevD.60.064018
[41] Cai R.G., Wang A.Z.: Phys. Rev. D 70, 064013 (2004) · doi:10.1103/PhysRevD.70.064013
[42] Myers R.C.: Phys. Rev. D 36, 392 (1987) · doi:10.1103/PhysRevD.36.392
[43] Brown J.D., York J.W.: Phys. Rev. D 47, 1407 (1993) · doi:10.1103/PhysRevD.47.1407
[44] Lemos J.P.S., Zanchin V.T.: Phys. Rev. D 54, 3840 (1996) · doi:10.1103/PhysRevD.54.3840
[45] Awad A.M.: Class. Quantum Grav. 20, 2827 (2003) · Zbl 1134.83324 · doi:10.1088/0264-9381/20/13/327
[46] Hawking S.W.: Commun. Math. Phys. 25, 152 (1972) · doi:10.1007/BF01877517
[47] Hawking S.W., Ellis G.F.R.: The Large Scale of Spacetime. Cambridge University Press, London (1973) · Zbl 0265.53054
[48] Dehghani M.H., Bordbar G.H., Shamirzaie M.: Phys. Rev. D 74, 064023 (2006) · doi:10.1103/PhysRevD.74.064023
[49] Beckenstein J.D.: Phys. Rev. D 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[50] Hawking S.W., Hunter C.J.: Phys. Rev. D 59, 044025 (1999) · doi:10.1103/PhysRevD.59.044025
[51] Hunter C.J.: Phys. Rev. D 59, 024009 (1999) · doi:10.1103/PhysRevD.59.024009
[52] Hawking S.W., Hunter C.J., Page D.N.: Phys. Rev. D 59, 044033 (1999) · doi:10.1103/PhysRevD.59.044033
[53] Mann R.B.: Phys. Rev. D 60, 104047 (1999) · doi:10.1103/PhysRevD.60.104047
[54] Mann R.B.: Phys. Rev. D 61, 084013 (2000) · doi:10.1103/PhysRevD.61.084013
[55] Cvetic M., Gubser S.S.: J. High Energy Phys. 4, 024 (1999) · Zbl 0956.83030 · doi:10.1088/1126-6708/1999/04/024
[56] Caldarelli M.M., Cognola G., Klemm D.: Class. Quantum Grav. 17, 399 (2000) · Zbl 0945.83019 · doi:10.1088/0264-9381/17/2/310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.