×

zbMATH — the first resource for mathematics

Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity. (English) Zbl 1177.83106
Summary: A new class of solutions which yields an \((n + 1)\)-dimensional spacetime with a longitudinal nonlinear magnetic field is introduced. These spacetimes have no curvature singularity and no horizon, and the magnetic field is non singular in the whole spacetime. They may be interpreted as traversable wormholes which could be supported by matter not violating the weak energy conditions. We generalize this class of solutions to the case of rotating solutions and show that the rotating wormhole solutions have a net electric charge which is proportional to the magnitude of the rotation parameter, while the static wormhole has no net electric charge. Finally, we use the counterterm method and compute the conserved quantities of these spacetimes.

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E15 Kaluza-Klein and other higher-dimensional theories
83C15 Exact solutions to problems in general relativity and gravitational theory
83C22 Einstein-Maxwell equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Candelas P., Horowitz G.T., Strominger A., Witten E.: Nucl. Phys. B 258, 46 (1985) · doi:10.1016/0550-3213(85)90602-9
[2] Greens M.B., Schwarz J.H., Witten E.: Superstring Theory. Cambridge University Press, Cambridge (1987)
[3] Lust D., Theusen S.: Lectures on String Theory. Springer, Berlin (1989)
[4] Polchinski J.: String Theory. Cambridge University Press, Cambridge (1998) · Zbl 1006.81521
[5] Zwiebach B.: Phys. Lett. B 156, 315 (1985) · doi:10.1016/0370-2693(85)91616-8
[6] Zumino B.: Phys. Rep. 137, 109 (1986) · doi:10.1016/0370-1573(86)90076-1
[7] Lovelock D.: J. Math. Phys. 12, 498 (1971) · Zbl 0213.48801 · doi:10.1063/1.1665613
[8] Gibbons G.W., Rasheed D.A.: Nucl. Phys. B 454, 185 (1995) · Zbl 0925.83031 · doi:10.1016/0550-3213(95)00409-L
[9] Born M., Infeld L.: Proc. Roy. Soc. Lond. A 144, 425 (1934) · Zbl 0008.42203 · doi:10.1098/rspa.1934.0059
[10] Boulware D.G., Deser S.: Phys. Rev. Lett. 55, 2656 (1985) · doi:10.1103/PhysRevLett.55.2656
[11] Cai R.G.: Phys. Rev. D 65, 084014 (2002) · doi:10.1103/PhysRevD.65.084014
[12] Cai R.G., Guo Q.: Phys. Rev. D 69, 104025 (2004) · doi:10.1103/PhysRevD.69.104025
[13] Aros R., Troncoso R., Zanelli J.: Phys. Rev. D 63, 084015 (2001) · doi:10.1103/PhysRevD.63.084015
[14] Cho Y.M., Neupane I.P.: Phys. Rev. D 66, 024044 (2002) · doi:10.1103/PhysRevD.66.024044
[15] Dehghani M.H., Mann R.B.: Phys. Rev. D 72, 124006 (2005) · doi:10.1103/PhysRevD.72.124006
[16] Dehghani M.H., Hendi S.H.: Phys. Rev. D 73, 084021 (2006) · doi:10.1103/PhysRevD.73.084021
[17] Dehghani M.H., Bordbar G.H., Shamirzaie M.: Phys. Rev. D 74, 064023 (2006) · doi:10.1103/PhysRevD.74.064023
[18] Dehghani M.H., Hendi S.H.: Int. J. Mod. Phys. D 16, 1829 (2007) · Zbl 1200.83096 · doi:10.1142/S0218271807011127
[19] Morris M.S., Thorne K.S.: Am. J. Phys. 56, 395 (1988) · Zbl 0957.83529 · doi:10.1119/1.15620
[20] Morris M.S., Thorne K.S., Yurtsever U.: Phys. Rev. Lett. 61, 1446 (1988) · doi:10.1103/PhysRevLett.61.1446
[21] Visser M., Kar S., Dadhich N.: Phys. Rev. Lett. 90, 201102 (2003) · Zbl 1267.83134 · doi:10.1103/PhysRevLett.90.201102
[22] Kar S., Sahdev D.: Phys. Rev. D 53, 722 (1996) · doi:10.1103/PhysRevD.53.722
[23] Cataldo M., Salgado P., Minning P.: Phys. Rev. D 66, 124008 (2002) · doi:10.1103/PhysRevD.66.124008
[24] Debenedictis A., Das D.: Nucl. Phys. B 653, 279 (2003) · Zbl 1010.83010 · doi:10.1016/S0550-3213(03)00051-8
[25] Bhawal B., Kar S.: Phys. Rev. D 46, 2464 (1992) · doi:10.1103/PhysRevD.46.2464
[26] Abramovitz M., Stegun I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Academic Press, New York (1975)
[27] Dehghani M.H.: Phys. Rev. D 69, 044024 (2004) · doi:10.1103/PhysRevD.69.044024
[28] Stachel J.: Phys. Rev. D 26, 1281 (1982) · doi:10.1103/PhysRevD.26.1281
[29] Maldacena J.: Adv. Theor. Math. Phys. 2, 231 (1998)
[30] Witten E.: Adv. Theor. Math. Phys. 2, 253 (1998)
[31] Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y.: Phys. Rep. 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[32] Dehghani M.H., Bostani N., Sheykhi A.: Phys. Rev. D 73, 104013 (2006) · doi:10.1103/PhysRevD.73.104013
[33] Dehghani M.H., Mann R.B.: Phys. Rev. D 73, 104003 (2006) · doi:10.1103/PhysRevD.73.104003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.