On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. (English) Zbl 1177.90205

Summary: The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices \((PRM)\). In the case of \(3 \times 3 PRM\), a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of \(PRM\). In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for \(4 \times 4\) pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated \(n \times n PRM\) is formulated, the elements \(a ij (i < j)\) of which were randomly chosen from the ratio scale \[ \dfrac{1}{M}, \dfrac{1}{M-1}, \ldots , \dfrac{1}{2}, 1, 2, \ldots , M-1, M, \] with equal probability \(1/(2M - 1)\) and \(a ji\) is defined as \(1/a ij\). By statistical analysis, the empirical distributions of the maximal eigenvalues of the \(PRM\) depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.


90B50 Management decision making, including multiple objectives
15A18 Eigenvalues, singular values, and eigenvectors


Full Text: DOI Link


[1] Aguarón J. and Moreno-Jiménez J.M. (2003). The geometric consistency index: Approximated thresholds. Euro. J. Oper. Res. 147: 137–145 · Zbl 1060.90657
[2] de Borda J.C. (1781). Mémoire sur les électiones au scrutin. Histoire de l’Académie Royale des Sciences, Paris
[3] Chu A.T.W., Kalaba R.E. and Spingarn K. (1979). A comparison of two methods for determining the weight belonging to fuzzy sets. J. Optim. Theory Appl. 4: 531–538 · Zbl 0377.94002
[4] Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues á la pluralité des voix, Paris (1785)
[5] Crawford G. and Williams C. (1985). A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29: 387–405 · Zbl 0585.62183
[6] Dodd F.J., Donegan H.A. and McMaster T.B.M. (1993). A statistical approach to consistency in AHP. Math. Comput. Modelling 18: 19–22 · Zbl 0800.90608
[7] Dodd F.J., Donegan H.A. and McMaster T.B.M. (1995). Inverse inconsistency in analytic hierarchy process. Euro. J. Oper. Res. 80: 86–93 · Zbl 0927.91004
[8] Duszak Z. and Koczkodaj W.W. (1994). Generalization of a new definition of consistency for pairwise comparisons. Inform. Process. Lett. 52: 273–276
[9] Forman E.H. (1990). Random indices for incomplete pairwise comparison matrices. Euro. J. Oper. Res. 48: 153–155
[10] Gass S.I. and Rapcsák T. (2004). Singular value decomposition in AHP. Euro. J. Oper. Res. 154(3): 573–584 · Zbl 1146.90445
[11] Gass S.I. and Standard S.M. (2002). Characteristics of positive reciprocal matrices in the analytic hierarchy process. J. Oper. Res. Soc. 53: 1385–1389 · Zbl 1138.90405
[12] Golden, B.L., Wang, Q.: An alternative measure of consistency. In: Golden, B.L., Wasil, E.A., Hacker, P.T. (eds.) Analytic Hierarchy Process: Applications and Studies, pp. 68–81. Springer-Verlag (1990)
[13] Jensen, R.E.: Comparison of eigenvector, least squares, Chi square and logarithmic least squares methods of scaling a reciprocal matrix. Trinity University, Working Paper 127 (1983). http://www.trinity.edu/rjensen/127wp/127wp.htm
[14] Johnson C.R., Beine W.B. and Wang T.J. (1979). Right-left asymmetry in an eigenvector ranking procedure. J. Math. Psychol. 19: 61–64
[15] Koczkodaj W.W. (1993). A new definition of consistency of pairwise comparisons. Math. Comput. Modelling 8: 79–84 · Zbl 0804.92029
[16] Koczkodaj, W.W., Herman, M.W., Orlowski, M.: Using consistency-driven pairwise comparisons in knowledge-based systems. In: Proceedings of the Sixth International Conference on Information and Knowledge Management, pp. 91–96. ACM Press (1997)
[17] Lane E.F. and Verdini W.A. (1989). A consistency test for AHP decision makers. Decis. Sci. 20: 575–590
[18] Monsuur H. (1996). An intrinsic consistency threshold for reciprocal matrices. Euro. J. Oper. Res. 96: 387–391 · Zbl 0917.90012
[19] Murphy C.K. (1993). Limits on the analytic hierarchy process from its consistency index. Euro. J. Oper. Res. 65: 138–139 · Zbl 0775.90009
[20] Peláez J.I. and Lamata M.T. (2003). A new measure of consistency for positive reciprocal matrices. Comput. Math. Appl. 46: 1839–1845 · Zbl 1121.91334
[21] Saaty T.L. (1980, 1990). The Analytic Hierarchy Process. McGraw-Hill, New York · Zbl 0587.90002
[22] Saaty, T.L.: Fundamentals of Decision Making. RSW Publications (1994) · Zbl 0816.90001
[23] Standard, S.M.: Analysis of positive reciprocal matrices. Master’s Thesis, Graduate School of the University of Maryland (2000) · Zbl 1138.90405
[24] Stein W.E. and Mizzi P.J. (2007). The harmonic consistency index for the analytic hierarchy process. Euro. J. Oper. Res. 177: 488–497 · Zbl 1111.90057
[25] Thorndike E.L. (1920). A constant error in psychological ratings. J. Appl. Psychol. 4: 25–29
[26] Thurstone L.L. (1927). The method of paired comparisons for social values. J. Abnormal Soc. Psychol. 21: 384–400
[27] Tummala V.M.R. and Ling H. (1998). A note on the computation of the mean random consistency index of the analytic hierarchy process (AHP). Theory Decis. 44: 221–230 · Zbl 0913.90066
[28] Vargas L.G. (1982). Reciprocal matrices with random coefficients. Math. Modelling 3: 69–81 · Zbl 0537.62100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.