×

Truncations of Toda chains and the reduction problem. (English) Zbl 1178.37077

Theor. Math. Phys. 143, No. 1, 515-528 (2005); translation from Teor. Mat. Fiz. 143, No. 1, 33-48 (2005).
Summary: We prove that the generalized Toda chains corresponding to simple Lie algebras of type D are reductions of chains corresponding to Lie algebras of type A.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K60 Lattice dynamics; integrable lattice equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. B. Shabat and R. I. Yamilov, ?Exponential systems of type I and Cartan matrices [in Russian],? Preprint, Bashkir Branch, Acad. Sci. USSR, Ufa (1981).
[2] M. A. Olshanetsky and A. M. Perelomov, Phys. Rep., 71, 313-400 (1981).
[3] A. N. Leznov and M. V. Saveliev, Group Methods of Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl.: Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel (1992).
[4] S. P. Tsarev, Theor. Math. Phys., 122, 121-133 (2000). · Zbl 0977.35009
[5] G. Darboux, Lecons sur la théorie générale des surfaces et les applications gé ométriques du calcul infinitésimal, Vol. 2, Gautier-Villars, Paris (1915).
[6] E. K. Sklyanin, Funct. Anal. Appl., 21, No.2, 164-166 (1987). · Zbl 0643.35093
[7] I. T. Habibullin, Phys. Lett. A, 178, 369-375 (1993).
[8] I. M. Anderson and N. Kamran, Duke Math. J., 87, 265-319 (1997). · Zbl 0881.35069
[9] A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, 61-101 (2001). · Zbl 1003.35093
[10] I. T. Habibullin and E. V. Gudkova, Funct. Anal. Appl., 38, No.2, 138-148 (2004); E. V. Gudkova and I. T. Habibullin, Theor. Math. Phys., 140, 1086-1094 (2004). · Zbl 1086.37036
[11] E. Goursat, Am. J. Math., 18, 347-385 (1896).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.