zbMATH — the first resource for mathematics

Parabolic and hyperbolic screw motion surfaces in \(\mathbb H^{2}\times \mathbb R\). (English) Zbl 1178.53060
The author studies certain equivariant minimal and constant mean curvature surfaces in the Riemannian product space \(H^2\times \mathbb R\).
More precisely, he determines families of complete minimal and constant mean curvature surfaces in \(H^2\times \mathbb R\), where \(H^2\) is the hyperbolic half plane with metric \({dx^2+dy^2\over y^2}\), of the form \((x,y)\mapsto(x,y,\ell x+\lambda(y))\) (“parabolic screw motion surface”) or \((\varphi,\rho)\mapsto(e^\varphi\cos\rho,e^\varphi\sin\rho, \ell\varphi+\lambda(\rho))\), \(\rho\in(0,\pi)\), (“hyperbolic screw motion surface”). Explicit formulae are obtained in each case.
Conjugate and associate minimal surfaces are then studied. The author shows that isometric minimal parabolic screw motion surfaces are associate. Conjugacy is discussed for several cases.

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text: DOI
[1] DOI: 10.1016/j.difgeo.2006.11.006 · Zbl 1125.53007
[2] Hauswirth, Pacific J. Math. 224 pp 91– (2006)
[3] DOI: 10.1353/ajm.2007.0023 · Zbl 1182.53058
[4] Spruck, Pure Appl. Math. Q. 3 pp 785– (2007) · Zbl 1145.53048
[5] Sa Earp, Illinois J. Math. 49 pp 1323– (2005)
[6] Schoen, Conference Proceedings and Lecture Notes in Geometry and Topology, II (1997)
[7] Sa Earp, Asian J. Math. 4 pp 669– (2000) · Zbl 0984.53005
[8] Rosenberg, Illinois J. Math. 46 pp 1177– (2002)
[9] DOI: 10.2748/tmj/1178229204 · Zbl 0501.53003
[10] Bour, J. Ecole Pol. 39 pp 1– (1862)
[11] Nelli, Pacific J. Math. 226 pp 137– (2006)
[12] DOI: 10.1007/s005740200013 · Zbl 1038.53011
[13] DOI: 10.1007/BF02392562 · Zbl 1078.53053
[14] Meeks III, Comment. Math. Helv. 80 pp 811– (2005)
[15] DOI: 10.2748/tmj/1215442875 · Zbl 1153.53041
[16] Wan, J. Differential Geom. 35 pp 643– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.