Predictive control method for decentralized operation of irrigation canals. (English) Zbl 1178.76109

Summary: This paper presents a digital control scheme for water level regulation in irrigation canals. The scheme considers a prototype canal composed by a series of pools connected with active gates. A control system is designed for each pool to manipulate the upstream gate to satisfy the downstream level setpoints. Each control system is composed by two controllers: one implements a discrete time predictive control law that gives the desired discharge through the gate to ensure the downstream desired level; another one is a local control driving the gate to achieve the desired discharge. The paper presents the formulation of the global control scheme and shows results from simulations to illustrate and discuss the performance in different operation scenarios.


76B75 Flow control and optimization for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography


Full Text: DOI


[1] Rogers, D.C.; Goussard, J., Canal control algorithms currently in use, J. irrig. drain. eng., ASCE, 124, 1, 11-15, (1998)
[2] Malaterre, P.O.; Rogers, D.C.; Schuurmans, J., Classification of canal control algorithms, J. irrig. drain. eng., ASCE, 124, 1, 3-10, (1998)
[3] Ruiz-Carmona, V.; Clemmens, A.J.; Schuurmans, J., Canal control algorithm formulations, J. irrig. drain. eng., ASCE, 124, 1, 31-39, (1998)
[4] Burt, C.M.; Mills, R.S.; Khalsa, R.D.; Ruiz-Carmona, V.M., Improved proportional-integral (PI) logic for canal automation, J. irrig. drain. eng., ASCE, 124, 1, 53-57, (1998)
[5] Deltour, J.L.; Sanfilippo, F., Introduction of Smith predictor into dynamic regulation, J. irrig. drain. eng., ASCE, 124, 1, 47-52, (1998)
[6] P. Kosuth, Techniques de régulation automatique des systèmes complexes: application aux systèmes hydrauliques à surface libre, Thèse de Doctorat, Institut National Polytechnique de Toulouse, Cemagref, LAAS CNRS, France, 1994
[7] Rodellar, J.; Gómez, M.; Martı́n Vide, J.P., Stable predictive control of open channel flow, J. irrig. drain. eng., ASCE, 115, 4, 701-713, (1989)
[8] Rodellar, J.; Gómez, M.; Bonet, L., Control method for on-demand operation of open channel flow, J. irrig. drain. eng., ASCE, 119, 2, 225-241, (1993)
[9] S. Sawadogo, Modélisation, commande prédictive et supervision d’un système d’irrigation, Thèse de Doctorat, LAAS-CNRS, Toulouse, France, 1992
[10] A.P. Bouillot, Application of the fuzzy set theory to the control of a large canal, ASCE-AFEID Meeting, October, Aix en Provence, France, 1994
[11] J.M. Reddy, N. Saratcchandra, Neurocontrol of irrigation canals, Proc. First Int. Conf. Water Res. Eng., San Antonio, Texas, USA, 1995, pp. 358-362
[12] Liu, F.; Feyen, J.; Berlamont, J., Downstream control of multireach canal systems, J. irrig. drain. eng., ASCE, 121, 2, 179-190, (1995)
[13] Liu, F.; Feyen, J.; Malaterre, P.O.; Baume, J.P.; Kosuth, P., Development and evaluation of canal automation algorithm CLIS, J. irrig. drain. eng., ASCE, 124, 1, 40-46, (1998)
[14] Filipovic, V.; Milosevic, Z., Dyn^{2} method for optimal control of water flow in open channels, J. irrig. drain. eng., ASCE, 115, 6, 973-981, (1989)
[15] Balogun, O.S.; Hubbard, M.; DeVries, J.J., Automatic control of canal flow using linear quadratic regulator theory, J. hydrol. eng., 114, 1, 75-102, (1988)
[16] P.O. Malaterre, Modelisation, analysis and LQR optimal control of an irrigation canal, Ph.D. Thesis, LAAS-CNRS-ENGREF-Cemagref, France, Etude EEE No. 14, 1994
[17] Reddy, J.M., Design of global control algorithm for irrigation canals, J. hydrol. eng., 122, 9, 503-511, (1996)
[18] P.O. Malaterre, J. Rodellar, Multivariable predictive control of irrigation canals. Design and evaluation on a 2-pool model, Proc. RIC97, Marrakech, Morocco, April 1997, pp. 230-238
[19] J.C. Pagès, J.M. Compas, J. Sau, Predictive control based coordinated operatin of a series of river developments, Proc. RIC97, Marrakech, Morocco, April 1997, pp. 239-248
[20] Siljak, D.D., Decentralized control of complex systems, (1991), Academic Press New York, USA · Zbl 0382.93003
[21] J. Schuurmans, Robust decentralized control of open-channels II: controller design, Proc. RIC97, Marrakech, Morocco, April 1997, pp. 84-91
[22] Seatzu, C., Design and robustness analysis of decentralized constant volume-control for open-channels, Appl. math. model., 23, 479-500, (1999) · Zbl 0979.93515
[23] S. Sawadogo, R.M. Faye, P.O. Malaterre, F. Mora-Camino, Decentralized predictive controller for delivery canals, Proc. IEEE SMC98, San Diego, USA, October 1998, pp. 3880-3884
[24] M. Gómez, J. Rodellar, F. Vea, J. Mantecón, J. Cardona, Decentralized predictive control of multi-reach canals, Proc. IEEE SMC98, San Diego, USA, October 1998, pp. 3885-3890
[25] Martı́n Sánchez, J.M.; Rodellar, J., Adaptive predictive control: from the concepts to plant optimization, (1996), Prentice Hall Int Hemel Hempstead, UK · Zbl 0890.93005
[26] J. Cardona, M. Gómez, J. Rodellar, A decentralized adaptive predictive controller for irrigation canals, Proc. RIC97, Marrakech, Morocco, April 1997, pp. 215-219
[27] Subramanya, K., Engineering hydrology, (1988), Tata McGraw-Hill New Delhi, India
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.