×

Feedback-controlled forcing in hybrid LES/RANS. (English) Zbl 1178.76209

Summary: The computational cost of a large eddy simulation (LES) increases rapidly with the Reynolds number when applied to attached boundary layers. This problem can be avoided by use of a Reynolds-averaged Navier-Stokes (RANS) model in the inner part of the boundary layer, which reduces the computational cost drastically. Such hybrid LES/RANS methods yield accurate results in general, but suffer from an artificial buffer layer and a shift in the velocity profile around the modeling interface. This velocity shift can be removed by use of additional forcing, but the results are very sensitive to the forcing amplitude.
The present paper proposes a feedback algorithm which efficiently finds the appropriate amplitude and thus yields accurate flow statistics. The feedback algorithm is relatively robust, both in that it is insensitive to the values of the parameters involved and that it yields accurate results with different forcing fields and for different Reynolds numbers. It is argued that the feedback algorithm is consistent with the underlying assumptions of hybrid LES/RANS and that it does not introduce additional empiricism into the method.

MSC:

76F70 Control of turbulent flows
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.2514/3.13200 · Zbl 0900.76319 · doi:10.2514/3.13200
[2] DOI: 10.2514/1.3496 · doi:10.2514/1.3496
[3] DOI: 10.2514/3.61311 · Zbl 0443.76060 · doi:10.2514/3.61311
[4] Davidson L., Int. J. CFD 19 pp 415– (2005)
[5] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[6] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[7] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[8] DOI: 10.1080/14685240612331392460 · Zbl 1273.76201 · doi:10.1080/14685240612331392460
[9] DOI: 10.1017/S0022112092002271 · Zbl 0765.76039 · doi:10.1017/S0022112092002271
[10] DOI: 10.1063/1.870414 · Zbl 1184.76393 · doi:10.1063/1.870414
[11] DOI: 10.1146/annurev.fluid.34.082901.144919 · doi:10.1146/annurev.fluid.34.082901.144919
[12] DOI: 10.1016/S0142-727X(03)00048-1 · doi:10.1016/S0142-727X(03)00048-1
[13] Sagaut P., Large Eddy Simulation for Incompressible Flows (2002) · Zbl 1020.76001
[14] DOI: 10.1016/0021-9991(91)90238-G · Zbl 0726.76074 · doi:10.1016/0021-9991(91)90238-G
[15] DOI: 10.1016/j.ijheatfluidflow.2004.07.006 · doi:10.1016/j.ijheatfluidflow.2004.07.006
[16] DOI: 10.1016/S0045-7930(03)00039-2 · Zbl 1033.76020 · doi:10.1016/S0045-7930(03)00039-2
[17] DOI: 10.1063/1.1476668 · Zbl 1185.76386 · doi:10.1063/1.1476668
[18] DOI: 10.1006/jcph.1994.1146 · Zbl 0809.76069 · doi:10.1006/jcph.1994.1146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.