×

zbMATH — the first resource for mathematics

Fluid-structure interaction using the particle finite element method. (English) Zbl 1178.76230
Summary: A new approach to solve fluid-structure interaction problems is described. Both, the equations of motion for fluids and for solids have been approximated using a material (Lagrangian) formulation. To approximate the partial differential equations representing the fluid motion, the shape functions introduced by the meshless finite element method (MFEM) have been used. Thus, the continuum is discretized into particles that move under body forces (gravity) and surface forces (due to the interaction with neighboring particles). All the physical properties such as density, viscosity, conductivity, etc., as well as the variables that define the temporal state such as velocity and position and also other variables like temperature are assigned to the particles and are transported with the particle motion. The so called particle finite element method (PFEM) provides a very advantageous and efficient way for solving contact and free-surface problems, highly simplifying the treatment of fluid-structure interactions.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubry, R.; Idelsohn, S.R.; Oñate, E., Particle finite element method in fluid mechanics including thermal convection-diffusion, Comput. struct., 83, 1459-1475, (2004)
[2] Belytschko, T.; Gu, L.; Lu, Y.Y., Fracture and crack growth by element free Galerkin methods, Model. simulat. mater sci. engrg., 2, 519-534, (1994)
[3] Codina, R., Pressure stability in fractional step finite element methods for incompressible flows, J. comput. phys., 170, 112-140, (2001) · Zbl 1002.76063
[4] Codina, R.; Cervera, M., Block-iterative algorithms for nonlinear coupled problems, () · Zbl 1071.76536
[5] C. Duarte, J.D. Oden, Hp clouds—a meshless method to solve boundary value problems, Technical Report 95-05, Texas institute for Computational and Applied Mechanics, University of Texas, 1995.
[6] Edelsbrunner, H.; Mucke, E.P., Three-dimensional alpha-shape, ACM trans. graph., 3, 43-72, (1994) · Zbl 0806.68107
[7] Idelsohn, S.R.; Oñate, E.; Calvo, N.; Del Pin, F., The meshless finite element method, Int. J. numer. methods engrg., 58, 4, (2003) · Zbl 1035.65129
[8] Idelsohn, S.R.; Oñate, E.; Del Pin, F., The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int. J. numer. methods engrg., 61, 7, 964-989, (2004) · Zbl 1075.76576
[9] Idelsohn, S.R.; Calvo, N.; Oñate, E., Polyhedrization of an arbitrary 3D point set, Comput. method appl. mech. engrg., 192, 2649-2667, (2003) · Zbl 1040.65019
[10] Koshizuka, S.; Oka, Y., Moving particle semi-implicit method for fragmentation of incompressible fluid, Nucl. engrg. sci., 123, 421-434, (1996)
[11] R. Löhner, J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman, D. Pelessone, in: Adaptive Embedded Unstructured Grid Methods, AIAA-03-1116, 2003.
[12] Mok, D.P.; Wall, W.A., Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, ()
[13] Gingold, R.A.; Monaghan, J.J., Kernel estimates as a basis for general particle methods in hydrodynamics, Journal of computational physics, 46, 429-453, (1981) · Zbl 0487.76010
[14] Gingold, R.A.; Monaghan, J.J., Smoothed particle hydrodynamics, theory and application to non-spherical stars, Mon. not R. astron. soc., 181, 375-389, (1997) · Zbl 0421.76032
[15] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Computat. mech., 10, 307-318, (1992) · Zbl 0764.65068
[16] Oñate, E., Derivation of stabilized equations for advective-diffusive transport and fluid flow problems, Comput. methods appl. mech. engrg., 151, 1-2, 233-267, (1998) · Zbl 0916.76060
[17] Oñate, E., A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation, Comput. methods appl. mech. engrg., 182, 1-2, 355-370, (2000) · Zbl 0977.76050
[18] Oñate, E., Possibilities of finite calculus in computational mechanics, Int. J. numer. methods engrg., 60, 1, 255-281, (2004) · Zbl 1060.76576
[19] Oñate, E.; Idelsohn, S.R.; Del Pin, F.; Aubry, R., The particle finite element method: an overview, Artíc. en revistas., 1, 2, 267-307, (2004) · Zbl 1182.76901
[20] Piperno, S.; Farhat, C.; Larrouturou, B., Partitioned procedures for the transient solution of coupled aeroelastic problems, Comput. methods appl. mech. engrg., 124, 79-112, (1995) · Zbl 1067.74521
[21] Radovitzky, R.; Ortiz, M., Lagrangian finite element analysis of a Newtonian flows, Int. J. numer. engrg., 43, 607-619, (1998) · Zbl 0945.76047
[22] Ramaswamy, B.; Kawahara, M., Lagrangian finite element analysis of Newtonian fluid flows, Int. J. numer. methods fluids, 7, 953-984, (1987) · Zbl 0622.76031
[23] Rugonyi, S.; Bathe, K.J., On the analysis of fully-coupled fluid flows with structural interactions-a coupling and condensation procedure, Int. J. comput civil struct. engrg., 1, 29-41, (2000)
[24] Rugonyi, S.; Bathe, K.J., On finite element analysis of fluid flows fully coupled with structural interactions, Comput. model. simulat. engrg. (CMES), 2, 195-212, (2001)
[25] Souli, M.; Ouahsine, A.; Lewin, L., Arbitrary Lagrangian-Eulerian formulation for fluid-structure interaction problems, Comput. methods appl. mech. engrg., 190, 659-675, (2000) · Zbl 1012.76051
[26] Sukumar, N.; Moran, B.; Belytschko, T., The natural element method in solid mechanics, Int. J. numer. methods engrg., 43, 839-887, (1998) · Zbl 0940.74078
[27] Zhang, H.; Bathe, K.J., Direct and iterative computing of fluid flows fully coupled with structures, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.