×

Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. (English) Zbl 1178.91043

Summary: The use of quantum mechanical concepts in social science is a fairly new phenomenon. This paper uses one of quantum mechanics’ most basic concepts, probability interference, to explain the violation of an important decision theory principle (the “sure-thing principle”). We also attempt to introduce other quantum mechanical concepts in relation to the sure-thing principle violation.

MSC:

91B06 Decision theory
91B80 Applications of statistical and quantum mechanics to economics (econophysics)
81P16 Quantum state spaces, operational and probabilistic concepts
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Accardi, L.; Boukas, A., The quantum black – scholes equation, Global journal of pure and applied mathematics, 2, 155-170, (2006) · Zbl 1157.91348
[2] Aerts, D.; D’Hooghe, B., Operator structure of a non-quantum and non-classical system, International journal of theoretical physics, 35, 2285-2298, (1996) · Zbl 0866.47048
[3] Aerts, D.; Aerts, S.; Broekaert, J.; Gabora, L., The violation of Bell inequalities in the macro-world, Foundations of physics, 30, 1387-1414, (2000)
[4] Aerts, D.; Czahor, M.; Gabora, L.; Kuna, M.; Posiewnik, A.; Pykacz, J., Quantum morphogenesis: A variation on thom’s catastrophe theory, Physical review E, 67, 051926, (2003)
[5] Baaquie, B., Quantum finance, (2005), Cambridge University Press Cambridge, UK
[6] Bohm, D.; Hiley, B., The undivided universe, (1993), Routledge New York, USA · Zbl 0990.81503
[7] Bohm, D., A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, part I and II, Physical review, 85, 166-193, (1952) · Zbl 0046.21004
[8] Bordley, R.F., Econophysics and individual choice, Physica A: statistical mechanics and its applications, 354, 479-495, (2005)
[9] Bossaerts, P., Ghirardato, P., Guarnaschelli, S., & Zame, W. (2007). Prices and allocations in asset markets with heterogeneous attitudes towards ambiguity. Working paper. California Institute of Technology
[10] ()
[11] Busemeyer, J.; Wang, Z., Quantum information processing explanation for interactions between inferences and decisions, ()
[12] Busemeyer, J.; Wang, Z.; Townsend, J.T., Quantum dynamics of human decision making, Journal of mathematical psychology, 50, 220-241, (2006) · Zbl 1186.91062
[13] Choustova, O., Quantum Bohmian model for financial markets, Physica A: statistical mechanics and its applications, 374, 304-314, (2006)
[14] Choustova, O., Toward quantum-like modelling of financial processes, Journal of physics: conference series, 70, 1-38, (2007)
[15] Conte, E.; Todarello, O.; Federici, A.; Vitiello, F.; Lopane, M.; Khrennikov, A., Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics, Chaos, solitons and fractals, 31, 1076-1088, (2006)
[16] Danilov, V. I., & Lambert-Mogiliansky, A. (2006). Non-classical expected utility theory. Preprint Paris-Jourdan Sciences Economiques · Zbl 1197.91091
[17] Dirac, P.A.M., The principles of quantum mechanics, (1930), Oxford University Press Oxford, UK · Zbl 0012.18104
[18] Duffie, D., Dynamic asset pricing theory, (1996), Princeton University Press Princeton, USA
[19] Ellsberg, D., Risk, ambiguity and the savage axioms, Quarterly journal of economics, 75, 643-669, (1961) · Zbl 1280.91045
[20] Etheridge, A., A course in financial calculus, (2002), Cambridge University Press Cambridge, UK · Zbl 1002.91025
[21] Franco, R. (2007). Quantum mechanics and rational ignorance. arXiv:physics/0702163v1
[22] Franco, R. (2008). Risk, ambiguity and quantum decision theory. http://xxx.lanl.gov/pdf/0711.0886
[23] Harrison, J.M.; Kreps, D.M., Martingales and arbitrage in multiperiod securities markets, Journal of economic theory, 20, 381-408, (1979) · Zbl 0431.90019
[24] Haven, E., Pilot-wave theory and financial option pricing, International journal of theoretical physics, 44, 1957-1962, (2005) · Zbl 1094.81015
[25] Haven, E., Private information and the ‘information function’: A survey of possible uses, Theory and decision, 64, 193-228, (2008) · Zbl 1136.91438
[26] Haven, E., The variation of financial arbitrage via the use of an information wave function, International journal of theoretical physics, 47, 193-199, (2008) · Zbl 1278.81054
[27] Haven, E., A survey of possible uses of quantum mechanical concepts in financial economics, ()
[28] Higham, D.J., An introduction to financial option valuation: mathematics, stochastics and computation, (2004), Cambridge University Press Cambridge, UK · Zbl 1122.91001
[29] Holland, P., The quantum theory of motion: an account of the de broglie – bohm causal interpretation of quantum mechanics, (1993), Cambridge University Press Cambridge, UK
[30] Kabanov, Yu.; Stricker, C., Remarks on the true no-arbitrage property, Lecture notes in mathematics, 1857, 186-194, (2005) · Zbl 1112.60308
[31] Khrennikov, A.Yu., Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena, Foundations of physics, 29, 1065-1098, (1999)
[32] Khrennikov, A. Yu. (2002). On the cognitive experiments to test quantum-like behavior of mind. Reports from Växjö University - Mathematics. Natural Sciences and Technology, 7
[33] Khrennikov, A.Yu., Information dynamics in cognitive, psychological and anomalous phenomena, (2004), Kluwer Dordrecht, The Netherlands · Zbl 1175.91151
[34] Khrennikov, A.Yu., The principle of supplementarity: A contextual probabilistic viewpoint to complementarity, the interference of probabilities, and the incompatibility of variables in quantum mechanics, Foundations of physics, 35, 1655-1693, (2005) · Zbl 1102.81008
[35] Khrennikov, A. Yu. (2007a). A model of quantum like decision making with applications to psychology and cognitive science. arXiv:0711.1366v1
[36] Khrennikov, A. Yu. (2007b). Classical and quantum randomness and the financial market. arXiv: 0704.2865v1[math.PR]
[37] Khrennikov, A.Yu., Quantum-like contextual model for processing of information in brain, () · Zbl 1354.91125
[38] Khrennikov, A. Yu. (2008). Quantum-like model of cognitive decision making and information processing. arXiv: 0708.2993v3[physics.gen-ph]
[39] Khrennikov, A.Yu.; Haven, E., Does probability interference exist in social science?, (), 899 · Zbl 1139.81304
[40] Khrennikov, A. Yu., & Haven, E. (2007). The importance of probability interference in social science: Rationale and experiment. arXiv: 0709.2802v1[physics.gen-ph] · Zbl 1139.81304
[41] Kreps, D., Notes on the theory of choice, (1988), Westview Press Boulder, USA
[42] Lambert Mogiliansky, A., Zamir, S., & Zwirn, H. (2003). Type Indeterminacy: A model of the KT (Kahneman-Tversky) man. Disc. Pper. 343. Hebrew University of Jerusalem (Center for the Study of Rationality) · Zbl 1178.91044
[43] La Mura, P. (2003). Correlated equilibria of classical strategic games with quantum signals. arXiV:quant-ph/0309033
[44] La Mura, P., Decision theory in the presence of uncertainty and risk, Vol. 68, (2005), HHL-Arbeitspapier Quelle, pp. 11 S
[45] Morrison, M., Understanding quantum physics, (1990), Prentice-Hall Upper Saddle River, NJ, USA
[46] Neftci, S., An introduction to the mathematics of financial derivatives, (2000), Academic Press San Diego, CA, USA · Zbl 0978.91047
[47] Savage, L.J., The foundations of statistics, (1954), Wiley New York, USA · Zbl 0121.13603
[48] Segal, W.; Segal, I.E., The black – scholes pricing formula in the quantum context, Proceedings of the national Academy of sciences of the USA, 95, 4072-4075, (1998) · Zbl 0903.90009
[49] Tversky, A.; Shafir, E., The disjunction effect in choice under uncertainty, Psychological science, 3, 305-309, (1992)
[50] von Neumann, J.; Morgenstern, O., Theory of games and economic behavior, (1947), Princeton University Press Princeton, USA · Zbl 1241.91002
[51] von Neumann, J., Mathematical foundations of quantum mechanics, (1955), Princeton University Press Princeton, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.