×

Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts. (English) Zbl 1178.94153

Summary: For discrete-time stochastic linear systems with bounded random measurement delays and packet dropouts, the optimal estimators including filter, predictor and smoother are developed in the linear minimum variance sense based on the innovation analysis approach. Some binary distributed random variables with known distributions are employed to describe the phenomenon of random delays and packet dropouts. Compared with the augmented approach, the computational cost is reduced. Furthermore, the proposed algorithm also gives a suboptimal estimate for systems with unbounded delays and packet dropouts by selecting a sufficient large upper bound. A simulation shows the effectiveness of the proposed algorithms.

MSC:

94A13 Detection theory in information and communication theory
93E10 Estimation and detection in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Zhang, H.; Xie, L.: Control and estimation of systems with input/output delays, (2007) · Zbl 1117.93003
[2] Zhang, H. S.; Lu, X.; Cheng, D.: Optimal estimation for continuous-time systems with delayed measurements, IEEE transactions on automatic control 51, 823-827 (2006) · Zbl 1366.93647
[3] Zhang, H. S.; Feng, G.; Duan, G.; Lu, X.: H-infinity filtering for multiple-time delayed measurements, IEEE transactions on signal processing 54, 1681-1688 (2006) · Zbl 1373.94749
[4] Nilsson, J.; Bernhardsson, B.; Wittenmark, B.: Stochastic analysis and control of real-time systems with random time delays, Automatica 34, 57-64 (1998) · Zbl 0908.93073
[5] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M.; Sastry, S.: Kalman filtering with intermittent observations, IEEE transactions on automatic control 49, No. 9, 1453-1464 (2004) · Zbl 1365.93512
[6] Nahi, N.: Optimal recursive estimation with uncertain observation, IEEE transactions on information theory 15, 457-462 (1969) · Zbl 0174.51102
[7] Hadidi, M.; Schwartz, S.: Linear recursive state estimators under uncertain observations, IEEE transactions on information theory 24, 944-948 (1979) · Zbl 0416.93087
[8] Nakamori, S.; Caballero-Aguila, R.; Hermoso-Carazo, A.; Linares-Perez, J.: Linear recursive distributed-time estimators using covariance information under uncertain observations, Signal processing 83, 1553-1559 (2003) · Zbl 1144.93375
[9] Ray, A.; Liou, L. W.; Shen, J. H.: State estimation using randomly delayed measurements, Journal of dynamic systems, measurement, and control 115, 19-26 (1993)
[10] E.E. Yaz, Harmonic estimation with random sensor delay, in: Proceedings of the 36th International Conference on Decision and Control, 1997, pp. 1524 – 1525.
[11] Yaz, E.; Ray, A.: Linear unbiased state estimation under randomly varying bounded sensor delay, Applied mathematics letters 11, 27-32 (1998) · Zbl 0944.93029
[12] Y.I. Yaz, E.E. Yaz, M.J. Mohseni, LMI-based state estimation for some discrete-time stochastic models, in: Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, pp. 456 – 460.
[13] Su, C. L.; Lu, C. N.: Interconnected network state estimation using randomly delayed measurements, IEEE transactions on power systems 16, 870-878 (2001)
[14] Matveev, A. S.; Savkin, A. V.: The problem of state estimation via asynchronous communication channels with irregular transmission times, IEEE transactions on automatic control 48, 670-676 (2003) · Zbl 1025.93019
[15] Nakamori, S.; Caballero-Aguila, R.; Hermoso-Carazo, A.; Linares-Perez, J.: Recursive estimators of signals from measurements with stochastic delays using covariance information, Applied mathematics and computation 162, 65-79 (2005) · Zbl 1062.94520
[16] Wang, Z.; Ho, D. W. C.; Liu, X.: Robust filtering under randomly varying sensor delay with variance constraints, IEEE transactions on circuits and systems II: Express briefs 51, No. 6, 320-326 (2004)
[17] Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust H-infinity filtering for stochastic time-delay systems with missing measurements, IEEE transactions on signal processing 54, 2579-2587 (2006) · Zbl 1373.94729
[18] Hounkpevi, F. O.; Yaz, E. E.: Minimum variance generalized state estimators for multiple sensors with different delay rates, Signal processing 87, 602-613 (2007) · Zbl 1186.94148
[19] Sahebsara, M.; Chen, T.; Shah, S. L.: Optimal H2 filtering with random sensor delay, multiple packet dropout and uncertain observations, International journal of control 80, 292-301 (2007) · Zbl 1140.93486
[20] Sun, S. L.; Xie, L. H.; Xiao, W. D.; Soh, Y. C.: Optimal linear estimation for systems with multiple packet dropouts, Automatica 44, No. 5, 1333-1342 (2008) · Zbl 1283.93271
[21] Sun, S. L.; Xie, L. H.; Xiao, W. D.; Xiao, N.: Optimal filtering for systems with multiple packet dropouts, IEEE transactions on circuits and systems II: Express briefs 55, No. 7, 695-699 (2008)
[22] I. Kolmanovsky, T.L. Maizenberg, Stochastic stability of a class of nonlinear systems with randomly varying time-delay, in: Proceedings of the American Control Conference, 2000, pp. 4304 – 4308.
[23] Kolmanovskii, V. B.; Maizenberg, T. L.; Richard, J. P.: Mean square stability of difference equations with a stochastic delay, Nonlinear analysis 52, 795-804 (2003) · Zbl 1029.39005
[24] Koning, W. L. D.E.: Optimal estimation of linear discrete-time systems with stochastic parameters, Automatica, 113-115 (1984) · Zbl 0542.93062
[25] Anderson, B. D. O.; Moore, J. B.: Optimal filtering, (1979) · Zbl 0688.93058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.