×

Vortical structures and heat transfer in a round impinging jet. (English) Zbl 1179.76038

Authors’ abstract: In order to gain a better insight into flow, vortical and turbulence structure and their correlation with the local heat transfer in impinging flows, we performed large-eddy simulations (LES) of a round normally impinging jet issuing from a long pipe at Reynolds number \(Re = 20000\) at the orifice-to-plate distance \(H = 2D\), where \(D\) is the jet-nozzle diameter. This configuration was chosen to match previous experiments in which several phenomena have been detected, but the underlying physics remained obscure because of limitations in the measuring techniques applied. The instantaneous velocity and temperature fields, generated by the LES, revealed interesting time and spatial dynamics of the vorticity and eddy structures and their imprints on the target wall, characterized by tilting and breaking of the edge ring vortices before impingement, flapping, precessing, splitting and pairing of the stagnation point/line, local unsteady separation and flow reversal at the onset of radial jet spreading, streaks pairing and branching in the near-wall region of the radial jets, and others. The LES data provided also a basis for plausible explanations of some of the experimentally detected statistically-averaged flow features such as double peaks in the Nusselt number and the negative production of turbulence energy in the stagnation region. The simulations, performed with an in-house unstructured finite-volume code T-FlowS, using second-order-accuracy discretization schemes for space and time and the dynamic subgrid-scale stress/flux model for unresolved motion, showed large sensitivity of the results to the grid resolution especially in the wall vicinity, suggesting care must be taken in interpreting LES results in impinging flows.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76D25 Wakes and jets
76D17 Viscous vortex flows
76M12 Finite volume methods applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112078002670 · doi:10.1017/S0022112078002670
[2] DOI: 10.1007/s00348-004-0778-2 · doi:10.1007/s00348-004-0778-2
[3] DOI: 10.1016/S0142-727X(97)00051-9 · doi:10.1016/S0142-727X(97)00051-9
[4] Cooper, Intl J. Heat Fluid Flow 36 pp 2675– (1993)
[5] DOI: 10.1016/0894-1777(96)00015-5 · doi:10.1016/0894-1777(96)00015-5
[6] DOI: 10.1016/S0017-9310(97)00243-3 · Zbl 0940.76511 · doi:10.1016/S0017-9310(97)00243-3
[7] DOI: 10.1115/1.1469522 · doi:10.1115/1.1469522
[8] DOI: 10.1016/0894-1777(93)90022-B · doi:10.1016/0894-1777(93)90022-B
[9] Behnia, Intl J. Heat Mass Transfer 20 pp 1– (1999)
[10] DOI: 10.1016/S0142-727X(03)00044-4 · doi:10.1016/S0142-727X(03)00044-4
[11] DOI: 10.1016/S0142-727X(03)00045-6 · doi:10.1016/S0142-727X(03)00045-6
[12] DOI: 10.1063/1.869451 · doi:10.1063/1.869451
[13] Baughn, Trans. ASME 111 pp 1096– (1989)
[14] DOI: 10.1016/0894-1777(91)90043-Q · doi:10.1016/0894-1777(91)90043-Q
[15] DOI: 10.1002/(SICI)1097-0363(19960815)23:33.0.CO;2-T · doi:10.1002/(SICI)1097-0363(19960815)23:33.0.CO;2-T
[16] Pope, Turbulent Flows (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[17] DOI: 10.1016/0735-1933(96)00001-2 · doi:10.1016/0735-1933(96)00001-2
[18] Piomelli, Transition and Turbulence Modelling (1996)
[19] DOI: 10.1017/S0022112090003317 · doi:10.1017/S0022112090003317
[20] DOI: 10.1063/1.869535 · doi:10.1063/1.869535
[21] Ni?eno, Modeling and Simulation of Turbulent Heat Transfer (Developments in Heat Transfer Series) (2004)
[22] DOI: 10.1016/0142-727X(96)00040-9 · doi:10.1016/0142-727X(96)00040-9
[23] Lytle, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (1991)
[24] DOI: 10.1016/0017-9310(94)90059-0 · doi:10.1016/0017-9310(94)90059-0
[25] Livingood, NASA TM none pp X– (1973)
[26] DOI: 10.1002/fld.1650081013 · Zbl 0667.76125 · doi:10.1002/fld.1650081013
[27] DOI: 10.1016/0045-7825(79)90034-3 · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[28] DOI: 10.1016/S0017-9310(99)00349-X · doi:10.1016/S0017-9310(99)00349-X
[29] Kataoka, Heat Transfer 1990, Proc. 9th Intl Heat Transfer Conf. vol. 1 pp 255– (1990)
[30] DOI: 10.1016/j.ijheatfluidflow.2004.05.004 · doi:10.1016/j.ijheatfluidflow.2004.05.004
[31] DOI: 10.1016/j.ijheatfluidflow.2004.07.005 · doi:10.1016/j.ijheatfluidflow.2004.07.005
[32] DOI: 10.1016/S0017-9310(03)00245-X · doi:10.1016/S0017-9310(03)00245-X
[33] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[34] DOI: 10.1017/S002211200500710X · Zbl 1178.76018 · doi:10.1017/S002211200500710X
[35] DOI: 10.1063/1.1900804 · Zbl 1187.76178 · doi:10.1063/1.1900804
[36] Fr?hlich, Closure Strategies for Turbulent and Transitional Flows pp 267– (2002) · doi:10.1017/CBO9780511755385.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.