×

zbMATH — the first resource for mathematics

The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. (English) Zbl 1180.35147
The author derives an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems.
Reviewer: Jiaqi Mo (Wuhu)

MSC:
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35B45 A priori estimates in context of PDEs
35B44 Blow-up in context of PDEs
35K58 Semilinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fermanian-Kammerer, C., Merle, F., Zaag, H.: Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Math. Ann., 317(2), 347–387 (2000) · Zbl 0971.35038 · doi:10.1007/s002080000096
[2] Filippas, S., Kohn, R. V.: Refined asymptotics for the blowup of u t \(\Delta\)u = u p. Comm. Pure Appl. Math., 45(7), 821–869 (1992) · Zbl 0784.35010 · doi:10.1002/cpa.3160450703
[3] Giga, Y., Kohn, R. V.: Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 38(3), 297–319 (1985) · Zbl 0585.35051 · doi:10.1002/cpa.3160380304
[4] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J., 36(1), 1–40 (1987) · Zbl 0601.35052 · doi:10.1512/iumj.1987.36.36001
[5] Giga, Y., Kohn, R. V.: Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math., 42(6), 845–884 (1989) · Zbl 0703.35020 · doi:10.1002/cpa.3160420607
[6] Merle, F., Zaag, H.: Stability of the blow-up profile for equations of the type u t = \(\Delta\)u + |u| p u. Duke Math. J., 86(1), 143–195 (1997) · Zbl 0872.35049 · doi:10.1215/S0012-7094-97-08605-1
[7] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math., 51(2), 139–196 (1998) · Zbl 0899.35044 · doi:10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
[8] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains. NoDEA Nonlinear Differential Equations Appl., 8(4), 473–480 (2001) · Zbl 0993.35046 · doi:10.1007/PL00001459
[9] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J., 34(2), 425–447 (1985) · Zbl 0576.35068 · doi:10.1512/iumj.1985.34.34025
[10] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain. Math. Methods Appl. Sci., 27(15), 1771–1782 (2004) · Zbl 1066.35043 · doi:10.1002/mma.562
[11] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J., 53(2), 483–514 (2004) · Zbl 1058.35096 · doi:10.1512/iumj.2004.53.2401
[12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations, 6(8), 883–901 (1981) · Zbl 0462.35041 · doi:10.1080/03605308108820196
[13] Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal., 4(1), 59–78 (1994) · Zbl 0816.35030
[14] Hu, B.: Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition. Differential Integral Equations, 9(5), 891–901 (1996) · Zbl 0852.35072
[15] Chlebík, M., Fila, M.: From critical exponents to blow-up rates for parabolic problems. Rend. Mat. Appl. Serie (7),, 19(4), 449–470 (1999) · Zbl 0980.35057
[16] Ackermann, N., Bartsch, T., Kaplicky, P., Quittner, P.: A priori bounds, nodal equlibria and connecting orbits in indefinite superlinear parabolic problems, Trans. A.M.S., 360(7), 3493–3539 (2008) · Zbl 1143.37049 · doi:10.1090/S0002-9947-08-04404-8
[17] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations, Nonlinear elliptic and parabolic problems, 391–402, Birkhäuser, Basel, 2005 · Zbl 1093.35037
[18] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term, Équations aux dérivées partielles et applications, pages 189–198, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998 · Zbl 0914.35055
[19] Poláčik, P., Quittner, P., Souplet, Ph.: Singularity and decay estimates in superlinear problems via liouvilletype theorems. part ii: Parabolic equations, Indiana Univ. Math. J., 56(2), 879–908 (2007) · Zbl 1122.35051 · doi:10.1512/iumj.2007.56.2911
[20] Dancer, E.: Some notes on the method of moving planes. Bull. Austral. Math. Soc., 46(3), 425–434 (1992) · Zbl 0777.35005 · doi:10.1017/S0004972700012089
[21] Kavian, O.: Remarks on the large time behaviour of a nonlinear diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 4(5), 423–452 (1987) · Zbl 0653.35036
[22] Levine, H. A., Meier, P.: A blowup result for the critical exponent in cones. Israel J. Math., 67(2), 129–136 (1989) · Zbl 0696.35013 · doi:10.1007/BF02937290
[23] Du, Y. H., Li, S. J.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Differential Equations, 10(8), 841–860 (2005) · Zbl 1161.35388
[24] Deng, K., Levine, H. A.: The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl., 243(1), 85–126 (2000) · Zbl 0942.35025 · doi:10.1006/jmaa.1999.6663
[25] Galaktionov, V. A., Vázquez, J. L.: The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst., 8(2), 399–433 (2002) · Zbl 1010.35057 · doi:10.3934/dcds.2002.8.399
[26] Levine, H. A.: The role of critical exponents in blowup theorems. SIAM Rev., 32(2), 262–288 (1990) · Zbl 0706.35008 · doi:10.1137/1032046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.