Wang, Mingxin; Pang, Peter Y. H.; Chen, Wenyan Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment. (English) Zbl 1180.35290 IMA J. Appl. Math. 73, No. 5, 815-835 (2008). The authors deal with the following elliptic system: \[ \begin{cases} -\Delta u=\lambda u-a(x)u^2-\frac{buv}{1+\gamma(x)u}, & x\in\Omega\\ -\Delta v=\mu v\left(1-\frac vu\right), & x\in\Omega\\ \frac{\partial u} {\partial\nu}=\frac{\partial v}{\partial\nu}=0, & x\in\partial\Omega \end{cases}\tag{1} \] where \(\Omega\subset\mathbb{R}^n\) is a bounded domain with smooth boundary \(\partial\Omega\), the parameters \(\lambda,\mu\), and \(b\) are positive constants and \(a(x)\) and \(\gamma(x)\) are non-negative continuous functions on \(\overline\Omega\). The main purpose of this paper is to study the effect of the degeneracies of \(a(x)\) and \((\gamma(x)\) on the steady-state behaviour in heterogeneous environment, that is on positive solutions of (1). Reviewer: Messoud A. Efendiev (Berlin) Cited in 8 Documents MSC: 35K57 Reaction-diffusion equations 92D25 Population dynamics (general) Keywords:Holling-Tanner prey-predator model; heterogeneous environments; diffusion; positive steady states; spatial patterns PDF BibTeX XML Cite \textit{M. Wang} et al., IMA J. Appl. Math. 73, No. 5, 815--835 (2008; Zbl 1180.35290) Full Text: DOI