×

zbMATH — the first resource for mathematics

A class of nonlinear parabolic-hyperbolic equations applied to image restoration. (English) Zbl 1180.35378
Summary: We discuss a class of nonlinear parabolic-hyperbolic equations which could be applied to image restoration. After theoretical analysis, we give an experimental approach to show the efficiency of this kind of model.

MSC:
35M13 Initial-boundary value problems for PDEs of mixed type
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
35L72 Second-order quasilinear hyperbolic equations
68U10 Computing methodologies for image processing
Keywords:
well-posedness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alvarez, L.; Mazorra, L., Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. numer. anal., 31, 2, 590-605, (1994) · Zbl 0804.65130
[2] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE trans. pattern anal. machine intell., 12, 7, 629-639, (1990)
[3] Chan, T.F.; Golub, G.H.; Mulet, P., A nonlinear primal-dual method for total variation-based image restoration, SIAM J. sci. comput., 20, 6, 1964-1977, (1999) · Zbl 0929.68118
[4] Rudin, L.I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028
[5] Vogel, C.R.; Oman, M.E., Iterative methods for total variation denoising, SIAM J. sci. comput., 17, 1, 227-238, (1996) · Zbl 0847.65083
[6] Chan, T.F.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. sci. comput., 22, 2, 503-516, (2000) · Zbl 0968.68175
[7] Lysaker, M.; Lundervold, A.; Tai, X.C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE tran. image process., 12, 12, 1579-1590, (2003) · Zbl 1286.94020
[8] Qiang, Q.; Yao, Z.A.; Ke, Y.Y., Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal, Nonlinear anal. TMA, 2007, 67, 1908-1918, (2007) · Zbl 1119.35031
[9] Gilboa, G.; Sochen, N.; Zeevi, Y.Y., Image enhancement and denoising by complex diffusion process, IEEE trans. pattern anal. machine intell., 26, 8, 1020-1036, (2004)
[10] V. Ratner, Y.Y. Zeevi, Image enhancement using elastic manifolds, ICIAP 2007, 14th International Conference on Image Analysis and Processing, 2007, pp. 769-774
[11] Park, Jone Yeoul; Jeong, Jae Ug, Optimal control of dampt klein – gordon equations with state constraints, J. math. anal. appl., 334, 11-27, (2007) · Zbl 1124.49017
[12] Averbuch, A.; Epstein, B.; Rabin, N.; Turkel, E., Edge-enhancement postprocessing using artificial dissipation, IEEE trans. image process., 15, 6, 1486-1498, (2006)
[13] Aubert, G.; Kornprobst, P., ()
[14] Evans, L.C., Partial differential equations, ()
[15] Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[16] Gao, Ping; Guo, Boling, The time-periodic solution for a 2D dissipative klein – gordon equation, J. math. anal. appl., 296, 2, 686-694, (2004) · Zbl 1051.35086
[17] Kapitanski, L., Global and unique weak solutions of nonlinear wave equations, Math. res. lett., 1, 2, 211-223, (1994) · Zbl 0841.35067
[18] Lin, YingZhen; Cui, MingGen, A new method to solve the damped nonlinear klein – gordon equation, Sci. China ser. A, 51, 2, 304-313, (2008) · Zbl 1145.35436
[19] Nakagiri, Shin-ichi; Ha, Jun-hong, Optimal control problems for damped klein – gordon equations, Nonlinear anal., 47, 1, 89-100, (2001) · Zbl 1042.49531
[20] Khalifa, M.E.; Elgamal, M., A numerical solution to klein – gordon equation with Dirichlet boundary condition, Appl. math. comput., 160, 2, 451-475, (2005) · Zbl 1126.65090
[21] Adams, R., Sobolev spaces, () · Zbl 0186.19101
[22] Catté, F.; Lions, P.L.; Morel, J.M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. numer. anal., 29, 1, 182-193, (1992) · Zbl 0746.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.