×

zbMATH — the first resource for mathematics

Generalized synchronization of fractional order hyperchaotic Lorenz system. (English) Zbl 1180.37043
A new four-dimensional differential system related to the well-known Lorenz system is treated in the work. By employing the so-called fractional calculus predictor-corrector algorithm, the lowest order for the hyperchaos in hyperchaotic Lorenz system is found numerically. Details on generalized synchronization are also presented.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vanecek A., Control Systems: From Linear Analysis to Synthesis of Chaos (1996)
[2] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023
[3] DOI: 10.1142/S021812740401014X · Zbl 1129.37323
[4] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[5] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013
[6] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510
[7] DOI: 10.1142/S021812740200631X · Zbl 1043.37026
[8] DOI: 10.1016/0375-9601(79)90150-6 · Zbl 0996.37502
[9] DOI: 10.1142/3033
[10] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[11] Hilfer R., Applications of Fractional Calculus in Physics (2001) · Zbl 0998.26002
[12] DOI: 10.2514/3.20641
[13] Koeller R., J. Appl. Mech-T. Asme. 51 pp 294–
[14] DOI: 10.1007/BF01176603 · Zbl 0578.73040
[15] Heaviside O., Electromagnetic Theory (1971)
[16] DOI: 10.1016/j.chaos.2004.01.018 · Zbl 1060.93515
[17] DOI: 10.1016/j.physleta.2006.04.087 · Zbl 1142.30303
[18] Li C., Phys. Rev. E 68 pp 1–
[19] DOI: 10.1016/j.chaos.2005.04.032 · Zbl 1086.94007
[20] Lu J., J. Xi’an Jiaotong Univ. 41 pp 497–
[21] DOI: 10.1103/PhysRevLett.66.1123
[22] DOI: 10.1142/S0218126693000113
[23] DOI: 10.1142/S0218127492000392 · Zbl 0875.93176
[24] DOI: 10.1016/S0960-0779(96)00146-4 · Zbl 05472223
[25] DOI: 10.1016/0375-9601(95)00654-L · Zbl 0963.93523
[26] DOI: 10.1016/0167-2789(94)90151-1 · Zbl 0825.93365
[27] DOI: 10.1016/0167-2789(95)00276-6 · Zbl 0925.93366
[28] Wang X., Acta Phys. Sin-Ch. Ed. 54 pp 2584–
[29] DOI: 10.1016/S0960-0779(96)00150-6 · Zbl 05472219
[30] DOI: 10.1016/S0167-2789(96)00319-3 · Zbl 0941.93534
[31] DOI: 10.1016/S0165-0114(97)00057-2
[32] DOI: 10.1063/1.1322358 · Zbl 0967.93045
[33] DOI: 10.1016/S0960-0779(01)00011-X · Zbl 1032.34045
[34] Ömer M., Phys. Rev. E 54 pp 4803–
[35] DOI: 10.1016/j.physleta.2003.10.074 · Zbl 1065.37503
[36] DOI: 10.1109/9.159595 · Zbl 0825.58027
[37] DOI: 10.1023/A:1016592219341 · Zbl 1009.65049
[38] DOI: 10.1016/S0167-2789(99)00234-1 · Zbl 0947.34041
[39] DOI: 10.1103/PhysRevE.51.980
[40] DOI: 10.1142/S0218127406015179 · Zbl 1097.94038
[41] Lü J., IEEE Trans. Circuits Syst. 53 pp 149–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.