×

zbMATH — the first resource for mathematics

Fractional vector calculus and fractional Maxwell’s equations. (English) Zbl 1180.78003
The fractional calculus has a long history, dating from 30 September 1695 when a derivative of order \(1/2\) was described by Leibniz. However, the history of the fractional vector calculus (FVC) is short, as it dates back only 10 years. This paper describes some different approaches to the formulation of the FVC which have been used in physics dring the last 10 years. Various generalizations are given, including the fractional Green’s and Stokes’ theorems, and also the theorems due to Gauss.

MSC:
78A02 Foundations in optics and electromagnetic theory
78A25 Electromagnetic theory (general)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Oldham, K.B.; Spanier, J., The fractional calculus: theory and applications of differentiation and integration to arbitrary order, (1974), Academic Press New York · Zbl 0292.26011
[2] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives theory and applications, (1993), Gordon and Breach New York · Zbl 0818.26003
[3] Miller, K.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[4] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[5] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and application of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003
[6] Ross, B., A brief history and exposition of the fundamental theory of fractional calculus, Lect. notes math., 457, 1-36, (1975)
[7] Kiryakova, V.; Rubin, B.; McBride, A.C., Fractional calculus and integral transforms of generalized functions, (1979), Pitman Press San Francisco
[8] Nishimoto, K., Fractional calculus: integrations and differentiations of arbitrary order, (1989), University of New Haven Press New Haven · Zbl 0798.26005
[9] Zaslavsky, G.M., Hamiltonian chaos and fractional dynamics, (2005), Oxford University Press Oxford · Zbl 1080.37082
[10] ()
[11] West, B.; Bologna, M.; Grigolini, P., Physics of fractal operators, (2003), Springer New York
[12] ()
[13] Zaslavsky, G.M., Phys. rep., 371, 461-580, (2002)
[14] Montroll, E.W.; Shlesinger, M.F., The wonderful world of random walks, (), 1-121
[15] Metzler, R.; Klafter, J.; Metzler, R.; Klafter, J., Phys. rep., J. phys. A, 37, R161-R208, (2004)
[16] Ben Adda, F.; Ben Adda, F., C.R. acad. sci. ser. I. math., J. fractional calculus, 11, 8, 21-52, (1997), (in French)
[17] Ben Adda, F.; Ben Adda, F., Nonlinear anal., C.R. acad. sci. I-math., 326, 7, 787-791, (1998)
[18] Engheta, N., Microwave opt. technol. lett., 17, 2, 86-91, (1998)
[19] E.I. Veliev, N. Engheta, Fractional curl operator in reflection problems, in: 10th International Conference on Mathematical Methods in Electromagnetic Theory, September 14-17, Ukraine, IEEE, 2004, pp. 228-230.; M.V. Ivakhnychenko, E.I. Veliev, Fractional curl operator in radiation problems, in: 10th International Conference on Mathematical Methods in Electromagnetic Theory, September 14-17, Ukraine, IEEE, 2004, pp. 231-233.
[20] Naqvi, Q.A.; Abbas, M.; Hussain, A.; Naqvi, Q.A.; Naqvi, S.A.; Naqvi, Q.A.; Hussain, A.; Hussain, A.; Ishfaq, S.; Naqvi, Q.A., Opt. commun., Prog. electromagn. res., Opt. commun., Prog. electromagn. res., 63, 2, 319-335, (2006)
[21] New Zealand Mathematics Colloquium, Massey University, Palmerston North, New Zealand, December 2005, Available at: <http://www.stt.msu.edu/mcubed/MathsColloq05.pdf>.
[22] Fractional Differential Forms II, preprint math-ph/0301016. · Zbl 1011.58001
[23] Chen, Yong; Yan, Zhen-ya; Zhang, Hong-qing, Appl. math. mechanics, 24, 3, 256-260, (2003)
[24] Kazbekov, K.K., Vladikavkaz math. J., 7, 2, 41-54, (2005), (in Russian), Available at: <http://www.vmj.ru/articles/2005_2_5.pdf>.
[25] Tarasov, V.E.; Tarasov, V.E.; Tarasov, V.E.; Tarasov, V.E., Phys. plasmas, Mod. phys. lett. B, Physics of plasmas, Mod. phys. lett. A, 21, 22, 1587-1600, (2006), physics/0606251
[26] Tarasov, V.E.; Tarasov, V.E., J. phys. A, Lett. math. phys., 73, 49-58, (2005), nlin.CD/0604007
[27] Tarasov, V.E.; Tarasov, V.E., Mod. phys. lett. B, Chaos, 16, 033108-248, (2006)
[28] Tarasov, V.E.; Zaslavsky, G.M., Physica A, 354, 249-261, (2005), physics/0511144
[29] Tarasov, V.E.; Tarasov, V.E.; Tarasov, V.E., Phys. lett. A, Ann. phys., Phys. lett. A, 341, 467-472, (2005)
[30] Gelfand, I.M.; Shilov, G.E., Generalized functions, vol. 1, (1964), Academic Press New York and London · Zbl 0115.33101
[31] Brandt, E.H., Phys. lett. A, 39, 3, 227-228, (1972)
[32] Foley, J.T.; Devaney, A.J., Phys. rev. B, 12, 3104-3112, (1975)
[33] Belleguie, L.; Mukamel, S., J. chem. phys., 101, 11, 9719-9735, (1994)
[34] Genchev, Z.D., Supercond. sci. technol., 10, 543-546, (1997)
[35] Mashhoon, B.; Mashhoon, B.; Mashhoon, B., Ann. phys. (Leipzig), Phys. rev. A, Phys. rev. A, 72, 10, 052105-598, (2005), hep-th/0702074
[36] Pierantozzi, T.; Vazquez, L., J. math. phys., 46, 113512, (2005)
[37] Laskin, N.; Zaslavsky, G.M., Physica A, 368, 38-54, (2006), nlin.SI/0512010
[38] Tarasov, V.E.; Zaslavsky, G.M.; Tarasov, V.E.; Zaslavsky, G.M., Chaos, Commun. nonlin. sci. numer. simul., 11, 885-898, (2006), nlin.PS/0512013
[39] V.E. Tarasov, Universal electromagnetic waves in dielectric J. Phys. C 20 (17) (2008) 175223.
[40] Tarasov, V.E.; Tarasov, V.E., J. math. phys., J. phys. A, 39, 14895-14910, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.