×

zbMATH — the first resource for mathematics

Two-machine flow-shop minimum-length scheduling with interval processing times. (English) Zbl 1180.90134

MSC:
90B35 Deterministic scheduling theory in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allahverdi A., International Journal of Mathematical Sciences 39 pp 2475–
[2] DOI: 10.1111/1475-3995.00393 · Zbl 1027.90026
[3] DOI: 10.1016/j.ejor.2003.08.027 · Zbl 1115.90025
[4] DOI: 10.1016/j.ejor.2004.10.027 · Zbl 1079.90050
[5] DOI: 10.1016/j.ejor.2005.02.001 · Zbl 1079.90001
[6] DOI: 10.1002/nav.3800010110 · Zbl 1349.90359
[7] Kouvelis P., IIE Transactions 32 pp 421–
[8] DOI: 10.1007/978-1-4757-2620-6
[9] DOI: 10.1057/palgrave.jors.2600690 · Zbl 1054.90549
[10] Lai T.-C., Mathematical and Computer Modelling 26 pp 67–
[11] DOI: 10.1016/S0377-2217(03)00424-7 · Zbl 1065.90038
[12] DOI: 10.1016/j.ejor.2005.09.017 · Zbl 1103.90043
[13] Pinedo M., Scheduling: Theory, Algorithms, and Systems (1995) · Zbl 1145.90393
[14] Slowinski R., Scheduling Under Fuzziness (1999)
[15] DOI: 10.1057/palgrave.jors.2601682 · Zbl 1095.90049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.