×

zbMATH — the first resource for mathematics

A review of recent advances in global optimization. (English) Zbl 1180.90245
Summary: This paper presents an overview of the research progress in deterministic global optimization during the last decade (1998-2008). It covers the areas of twice continuously differentiable nonlinear optimization, mixed-integer nonlinear optimization, optimization with differential-algebraic models, semi-infinite programming, optimization with grey box/nonfactorable models, and bilevel nonlinear optimization.

MSC:
90C26 Nonconvex programming, global optimization
90-03 History of operations research and mathematical programming
01A65 Development of contemporary mathematics
Software:
LogMIP; EGO; COCONUT
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adams W.P., Sherali H.D.: A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems. Ann. Oper. Res. 140(1), 21–47 (2005) · Zbl 1091.90060
[2] Adhya N., Tawarmalani M., Sahinidis N.V.: A Lagrangian approach to the pooling problems. Ind. Eng. Chem. Res. 38, 1956–1972 (1999)
[3] Adjiman, C.S., Papamichail, I.: A deterministic global optimization algorithm for problems with nonlinear dynamics. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 1–24. Kluwer Academic Publishers (2003) · Zbl 1165.49306
[4] Adjiman C.S., Dallwig S., Floudas C.A., Neumaier A.: A global optimization method, {\(\alpha\)}BB, for general twice-differentiable NLPs – I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998a)
[5] Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, {\(\alpha\)}BB, for general twice–differentiable NLPs – II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998b)
[6] Adjiman C.S., Androulakis I.P., Floudas C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46, 1769 (2000)
[7] Akrotirianakis I.G., Floudas C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30(4), 367–390 (2004a) · Zbl 1082.90090
[8] Akrotirianakis I.G., Floudas C.A.: Computational experience with a new class of convex underestimators: box-constrained NLP problems. J. Glob. Optim. 29(3), 249–264 (2004b) · Zbl 1133.90420
[9] Alex J., Tschepetzki R., Jumar U., Obenaus F., Rosenwinkel K.H.: Analysis and design of suitable model structures for activated sludge tanks with circulating flow. Water Sci. Technol. 39(4), 55–60 (1999)
[10] Ali M.M., Khompatraporn C., Zabinsky Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005) · Zbl 1093.90028
[11] Amaral P., Judice J., Sherali H.D.: A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints. Comput. Oper. Res. 35(5), 1494–1509 (2008) · Zbl 1278.90371
[12] Androulakis, I.P., Floudas, C.A.: Distributed branch and bound algorithms in global optimization. In: Pardalos, P.M. (ed.) IMA Volumes in Mathematics and Its Applications, vol. 106, Parallel Processing of Discrete Problems, pp. 1–36. Springer-Verlag (1998) · Zbl 0961.90080
[13] Angira R., Santosh A.: Optimization of dynamic systems: a trigonometric differential evolution approach. Comput. Chem. Eng. 31(9), 1055–1063 (2007)
[14] Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series. Springer (2005) · Zbl 1071.90001
[15] Babahadda H., Gadhi N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Glob. Optim. 34(4), 535–549 (2006) · Zbl 1090.49021
[16] Banga, J.R. Moles, C.G., Alonso, A.A.: Global optimization of bioprocesses using stochastic and hybrid methods. In: Floudas, C.A., Pardalos, P.M.(eds.) Frontiers in Global Optimization, pp. 45–70. Kluwer Academic Publishers (2003a) · Zbl 1165.90703
[17] Banga J.R., Balsa-Canto E., Moles C.G., Alonso A.A.: Improving food processing using modern optimization methods. Trends Food Sci. Technol. 14, 131–144 (2003b) · Zbl 1229.49001
[18] Banga J.R., Versyck K.J., Van Impe J.F.: Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach. Ind. Eng. Chem. Res. 41, 2425–2430 (2002)
[19] Bard, J.F.: Practical Bilevel Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (1998) · Zbl 0943.90078
[20] Barton P.I., Lee C.K.: Global dynamic optimization of linear time varying hybrid systems. Dyn. Contin. Discrete Impuls. Syst. B. S, 153–158 (2003)
[21] Barton P.I., Lee C.K.: Design of process operations using hybrid dynamic optimization. Comput. Chem. Eng. 28(6–7), 955–969 (2004)
[22] Barton P.I., Banga J.R., Galan S.: Optimization of hybrid discrete/continuous dynamic systems. Comput. Chem. Eng. 24, 2171–2182 (2000)
[23] Barton P.I., Lee C.K., Yunt M.: Optimization of hybrid systems. Comput. Chem. Eng. 30(10–12), 1576–1589 (2006)
[24] Beck A., Ben-Tal A., Teboulle M.: Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28(2), 425–445 (2006) · Zbl 1115.65065
[25] Benson H.P.: On the global optimization of sums of nonlinear fractional functions over a convex set. J. Optim. Theory Appl. 121(1), 19–39 (2004) · Zbl 1140.90473
[26] Benson H.P.: Fractional programming with convex quadratic forms and functions. Eur. J. Oper. Res. 173(2), 351–369 (2006) · Zbl 1113.90122
[27] Benson H.P.: Solving sum of ratios fractional programs via concave minimization. J. Optim. Theory Appl. 135(1), 1–17 (2007a) · Zbl 1145.90089
[28] Benson H.P.: A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem. Eur. J. Oper. Res. 182(2), 597–611 (2007b) · Zbl 1121.90102
[29] Bergamini M.L., Scenna N.J., Aguirre P.A.: Global optimal structures of heat exchanger networks by piecewise relaxation. Ind. Eng. Chem. Res. 46(6), 1752–1763 (2007)
[30] Björk K.J., Westerlund T.: Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption. Comput. Chem. Eng. 26, 1581–1593 (2002)
[31] Björk K.J., Lindberg P.O., Westerlund T.: Some convexifications in global optimization of problems containing signomial terms. Comput. Chem. Eng. 27, 669–679 (2003)
[32] Bhattacharjee B., Green W.H., Barton P.I.: Interval methods for semi-infinite programming. Comput. Optim. Appl. 30(1), 63–93 (2005a) · Zbl 1130.90048
[33] Bhattacharjee B., Lemonidis P., Green W.H., Barton P.I.: Global solution of semi-infinite programs. Math. Program. 103(2), 283–307 (2005b) · Zbl 1090.90188
[34] Birgin, E.G., Floudas, C.A., Martinez, J.M.: Global optimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program., submitted for publication (2008)
[35] Borradaile G., Van Hentenryck P.: Safe and tight linear estimators for global optimization. Math. Program. 102, 495–517 (2005) · Zbl 1066.90087
[36] Bringas E., Karuppiah R., Roman M.F.S., Ortiz I., Grossmann I.E.: Optimal groundwater remediation network design using selective membranes. Ind. Eng. Chem. Res. 46(17), 5555–5569 (2007)
[37] Byrne R.P., Bogle I.D.L.: Global optimization of constrained non-convex programs using reformulation and interval analysis. Comput. Chem. Eng. 23, 1341 (1999)
[38] Byrne R.P., Bogle I.D.L.: Global optimization of molecular process flowsheets. Ind. Eng. Chem. Res. 39, 4296–4301 (2000)
[39] Campelo M., Scheimberg S.: A study of local solutions in linear bilevel programming. J. Optim. Theory Appl. 125(1), 63–84 (2005) · Zbl 1114.90108
[40] Caratzoulas S., Floudas C.A.: A trigonometric convex underestimator for the base functions in Fourier space. J. Optim. Theory Appl. 124(2), 339–362 (2005) · Zbl 1066.90089
[41] Casado L.G., Garcia I., Sergeyev Y.D.: Interval algorithms for finding the minimal root in a set of multiextremal one-dimensional nondifferentiable functions. SIAM J. Sci. Comput. 24(2), 359–376 (2002) · Zbl 1014.65054
[42] Casado L.G., Martinez J.A., Garcia I., Sergeyev Y.D.: New interval analysis support functions using gradient information in a global minimization algorithm. J. Glob. Optim. 25, 345–362 (2003) · Zbl 1046.90060
[43] Chachuat, B., Latifi, M.A.: A new approach in deterministic global optimization of problems with ordinary differential equations. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 83–108. Kluwer Academic Publishers (2003) · Zbl 1165.90686
[44] Chachuat B., Singer A.B., Barton P.I.: Global mixed-integer dynamic optimization. AIChE J. 51(8), 2235–2253 (2005)
[45] Chachuat B., Singer A.B., Barton P.I.: Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8373–8392 (2006)
[46] Chang Y.J., Sahinidis N.V.: Optimization of metabolic pathways under stability considerations. Comput. Chem. Eng. 29(3), 467–479 (2005)
[47] Chaovalitwongse W., Pardalos P.M., Prokopyev O.A.: A new linearization technique for multi-quadratic 0–1 programming problems. Oper. Res. Lett. 32(6), 517–522 (2004) · Zbl 1054.90047
[48] Cheung A., Adjiman C.S., Kolar P., Ishikawa T.: Global optimization for clusters of flexible molecules-solvent-solute interaction energy calculations. Fluid Phase Equilib. 194, 169–183 (2002)
[49] Chinchuluun A., Pardalos P.M., Enkhbat R.: Global minimization algorithms for concave quadratic programming problems. Optimization 54(6), 627–639 (2005) · Zbl 1147.90385
[50] D’Apuzzo, M., Marino, M., Migdalas, A., Pardalos, P.M., Toraldo, G.: Parallel computing in global optimization. In: Kontoghiorghes, E.J. (ed.) Handbook of Parallel Computing and Statistics, pp. 259–282. Chapman & Hall/CRC (2006)
[51] Davis E., Ierapetritou M.: A kriging method for the solution of nonlinear programs with black-box functions. AIChE J. 53(8), 2001–2012 (2007)
[52] Davis, E., Ierapetritou, M.: A kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions. J. Glob. Optim. (2008, in press) · Zbl 1179.90238
[53] De Saboia C.H.M., Campelo M., Scheimberg S.: A computational study of global algorithms for linear bilevel programming. Numer. Algorithms 35(2–4), 155–173 (2004) · Zbl 1054.65060
[54] Ding X.S., Al-Khayyal F.: Accelerating convergence of cutting plane algorithms for disjoint bilinear programming. J. Glob. Optim. 38(3), 421–436 (2007) · Zbl 1171.90494
[55] Doye J.P.K., Leary R.H., Locatelli M., Schoen F.: Global optimization of Morse clusters by potential energy transformations. INFORMS J. Comput. 16(4), 371–379 (2004) · Zbl 1239.90085
[56] Downs J.J., Vogel E.F.: A plant-wide industrial-process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)
[57] Dua V., Bozinis N.A., Pistikopoulos E.N.: A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26(4–5), 715–733 (2002)
[58] Dua V., Papalexandri K.P., Pistikopoulos E.N.: Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J. Glob. Optim. 30(1), 59–89 (2004) · Zbl 1136.90438
[59] Dur M., Horst R., Locatelli M.: Necessary and sufficient global optimality conditions for convex minimization revisited. J. Math. Anal. Appl. 217, 637–639 (1998) · Zbl 0909.90223
[60] Dzemyda, G., Saltenis, V., Zilinskas, A.: Stochastic and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2002)
[61] Egea J.A., Rodriguez-Fernandez M., Banga J.R., Marti R.: Scatter search for chemical and bio-process optimization. J. Glob. Optim. 37(3), 481–503 (2007a) · Zbl 1108.92001
[62] Egea J.A., Vries D., Alonso A.A., Banga J.R.: Global optimization for integrated design and control of computationally expensive process models. Ind. Eng. Chem. Res. 46(26), 9148–9157 (2007b)
[63] Egea, J.A., Vazquez, E., Banga, J.R., Marti, R.: Improved scatter search for the global optimization of computationally expensive dynamic models. J. Glob. Optim. (2008, in press) · Zbl 1179.90307
[64] Emet S., Westerlund T.: Comparisons of solving a chromatographic separation problem using MINLP methods. Comput. Chem. Eng. 28(5), 673–682 (2004)
[65] Esposito W.R., Floudas C.A.: Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 35(5), 1841–1858 (1998)
[66] Esposito W.R., Floudas C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5), 1291–1310 (2000a)
[67] Esposito W.R., Floudas C.A.: Determistic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17, 97–126 (2000b) · Zbl 0980.49027
[68] Esposito W.R., Floudas C.A.: Comments on global optimization for the parameter estimation of differential algebraic systems. Ind. Eng. Chem. Res. 40, 490 (2001)
[69] Esposito W.R., Floudas C.A.: Deterministic global optimization in isothermal reactor network synthesis. J. Glob. Optim. 22, 59–95 (2002) · Zbl 1045.90094
[70] Exler O., Antelo L.T., Egea J.A., Alonso A.A., Banga J.R.: A tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput. Chem. Eng. 32(8), 1877–1891 (2008)
[71] Faisca N.P., Dua V., Rustem B., Saraiva P.M., Pistikopoulos E.N.: Parametric global optimization for bilevel programming. J. Glob. Optim. 38(4), 609–623 (2007) · Zbl 1145.91016
[72] Fang S.C., Gao D.Y., Sheu R.L., Wu S.Y.: Canonical dual approach to solving 0-1 quadratic programming problems. J. Ind. Manag. Optim. 4(1), 125–142 (2008) · Zbl 1180.90195
[73] Feo T.A., Resende M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989) · Zbl 0675.90073
[74] Feo T.A., Resende M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2), 109–133 (1995) · Zbl 0822.90110
[75] Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press (1995) · Zbl 0886.90106
[76] Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000a)
[77] Floudas C.A.: Global optimization in design and control of chemical process systems. J. Process Control 10, 125 (2000b)
[78] Floudas C.A.: Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51(7), 1872–1884 (2005)
[79] Floudas C.A.: Computational methods in protein structure prediction. Biotechnol. Bioeng. 97(2), 207–213 (2007)
[80] Floudas C.A., Jongen H.T.: Global optimization: local minima and transition points. J. Glob. Optim. 32, 409–415 (2005) · Zbl 1149.90386
[81] Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: symmetry-based approach. In: Törn, A., Zilinskas, J. (eds.) Models and Algorithms for Global Optimization, pp. 21–42. Springer (2007a) · Zbl 1267.90105
[82] Floudas C.A., Kreinovich V.: On the functional form of convex underestimators for twice continuously differentiable functions. Optim. Lett. 1, 187–192 (2007b) · Zbl 1133.49030
[83] Floudas, C.A., Pardalos, P.M.: Optimization in Computational Chemistry and Molecular Biology – Local and Global Approaches. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2000) · Zbl 0936.00053
[84] Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Kluwer Academic Publishers (2001) · Zbl 1027.90001
[85] Floudas, C.A., Pardalos, P.M.: Frontiers in Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2003)
[86] Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Kluwer Academic Publishers (2008) · Zbl 1156.90001
[87] Floudas C.A., Stein O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18(4), 1187–1208 (2007) · Zbl 1216.90094
[88] Floudas C.A., Visweswaran V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs. 1. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)
[89] Floudas C.A., Aggarwal A., Ciric A.R.: Global optimum search for non convex NLP and MINLP problems. Comput. Chem. Eng. 13(10), 1117–1132 (1989)
[90] Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers (1999) · Zbl 0943.90001
[91] Floudas C.A., Gümüş Z.H., Ierapetritou M.G.: Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40, 4267–4282 (2001)
[92] Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)
[93] Floudas C.A., Fung H.K., McAllister S.R., Monningmann M., Rajgaria R.: Advances in protein structure prediction and de novo protein design: a review. Chem. Eng. Sci. 61(3), 966–988 (2006)
[94] Foteinou, P.T., Saharidis, G.K., Ierapetritou, M.G., Androulakis, I.P.: A mixed-integer optimization framework for the synthesis and analysis of regulatory networks. J. Glob. Optim. (2008, in press) · Zbl 1279.90119
[95] Freitas L., Platt G.M., Henderson N.: Novel approach for the calculation of critical points in binary mixtures using global optimization. Fluid Phase Equilib. 225(1–2), 29–37 (2004)
[96] Frits E.R., Markot M.C., Lelkes Z., Fonyo Z., Csendes T., Rev E.: Use of an interval global optimization tool for exploring feasibility of batch extractive distillation. J. Glob. Optim. 38(2), 297–313 (2007) · Zbl 1180.90388
[97] Gao D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems. Optimization 52(4–5), 467–493 (2003) · Zbl 1040.49036
[98] Gao D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming – dedicated to Professor Ivar Ekeland on the occasion of his 60th birthday. J. Glob. Optim. 29(4), 377–399 (2004) · Zbl 1075.90074
[99] Gao D.Y.: Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. J. Ind. Manag. Optim. 1(1), 53–63 (2005) · Zbl 1140.90506
[100] Gao D.Y.: Solutions and optimality criteria to box constraint nonconvex minimization problems. J. Ind. Manag. Optim. 3(2), 293–304 (2007) · Zbl 1171.90504
[101] Gattupalli, R.R., Lucia, A.: Molecular conformation of n-alkanes using terrain/funneling methods. J. Glob. Optim. (2008, in press) · Zbl 1279.90134
[102] Gau C.Y., Stadtherr M.A.: Reliable nonolinear parameter estimation using interval analysis: error-in-variable approach. Comput. Chem. Eng. 24, 631–637 (2000)
[103] Gau C.Y., Stadtherr M.A.: New interval methodologies for reliable chemical modeling. Comput. Chem. Eng. 26, 827–840 (2002a)
[104] Gau C.Y., Stadtherr M.A.: Dynamic load balancing for parallel interval-Newton using message passing. Comput. Chem. Eng. 26, 811–825 (2002b)
[105] Gau C.Y., Stadtherr M.A.: Deterministic global optimization for error-in-variables parameter estimation. AIChE J. 48, 1192 (2002c)
[106] Gau C.Y., Brennecke J.F., Stadtherr M.A.: Reliable nonlinear parameter estimation in VLE modeling. Fluid Phase Equilib. 168, 1–18 (2000)
[107] Geletu A., Hoffmann A.: A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization. Eur. J. Oper. Res. 157(1), 3–15 (2004) · Zbl 1106.90068
[108] Ghosh S., Zhu T., Grossmann I.E., Ataai M.M., Domach M.M.: Closing the loop between feasible flux scenario identification for construct evaluation and resolution of realized fluxes via NMR. Comput. Chem. Eng. 29(3), 459–466 (2005)
[109] Goberna M.A., Lopez M.A.: Linear semi-infinite programming theory: an updated survey. Eur. J. Oper. Res. 143(2), 390–405 (2002) · Zbl 1058.90067
[110] Gounaris C.E., Floudas C.A.: Tight convex underestimators for C 2-continuous problems: I. Univariate functions. J. Glob. Optim. 42(1), 51–67 (2008a) · Zbl 1173.90503
[111] Gounaris C.E., Floudas C.A.: Tight convex underestimators for C 2-continuous problems: II Multivariate functions. J. Glob. Optim. 42(1), 69–89 (2008b) · Zbl 1170.90459
[112] Gounaris C.E., Floudas C.A.: Convexity of products of univariate functions and convexification transformations for geometric programming. J. Optim. Theory Appl. 138(3), 407–427 (2008c) · Zbl 1163.90017
[113] Goyal V., Ierapetritou M.G.: Framework for evaluating the feasibility/operability of nonconvex processes. AIChE J. 49(5), 1233–1240 (2003a)
[114] Goyal, V., Ierapetritou, M.G.: MINLP optimization using simplicial approximation method for classes of non-convex problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp.165–196. Kluwer Academic Publishers (2003b) · Zbl 1176.90466
[115] Grossmann I.E., Lee S.: Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26(1), 83–100 (2003) · Zbl 1030.90069
[116] Gümüş Z.H., Floudas C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob. Optim. 20, 1–31 (2001) · Zbl 1049.90092
[117] Gümüş Z.H., Floudas C.A.: Global optimization of mixed-integer bilevel programming problems. Comput. Manag. Sci. 2, 181–212 (2005) · Zbl 1112.90061
[118] Gutmann H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001) · Zbl 0972.90055
[119] Hadjisavvas, N., Pardalos, P.M.: Advances in Convex Analysis and Global Optimization – Honoring the Memory of C. Caratheodory (1873–1950). Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2001) · Zbl 0968.00020
[120] Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Pure and Applied Mathematics. Marcel Dekker (2004) · Zbl 1103.90092
[121] Harding S.T., Floudas C.A.: Global optimization in multiproduct and multipurpose batch design under uncertainty. Ind. Eng. Chem. Res. 36(5), 1644–1664 (1997)
[122] Harding S.T., Floudas C.A.: Phase stability with cubic equations of state: a global optimization approach. AIChE J. 46, 1422 (2000a)
[123] Harding S.T., Floudas C.A.: Locating heterogeneous and reactive azeotropes. Ind. Eng. Chem. Res. 39, 1576 (2000b)
[124] Harding S.T., Maranas C.D., McDonald C.M., Floudas C.A.: Locating all homogeneous azeotropes in multicomponent mixtures. Ind. Eng. Chem. Res. 36(1), 160–178 (1997)
[125] Harjunkoski I., Westerlund T., Pörn R.: Numerical and environmental considerations on a complex industrial mixed integer nonlinear programming (MINLP) problem. Comput. Chem. Eng. 23, 1545–1561 (1999)
[126] Henderson N., Freitas U., Platt G.M.: Prediction of critical points: a new methodology using global optimization. AIChE J. 50(6), 1300–1314 (2004)
[127] Hertz D., Adjiman C.S., Floudas C.A.: Two results on bounding the roots of interval polynomials. Comput. Chem. Eng. 23, 1333 (1999)
[128] Hiriart-Urruty J.B., Ledyav J.S.: A note in the characterization of the global maxima of a convex function over a convex set. J. Convex Anal. 3, 55–61 (1996) · Zbl 0877.49017
[129] Hirsch M.J., Meneses C.N., Pardalos P.M., Resende M.G.C.: Global optimization by continuous grasp. Optim. Lett. 1(2), 201–212 (2007) · Zbl 1149.90119
[130] Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer (2003) · Zbl 0704.90057
[131] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2000) · Zbl 0966.90073
[132] Hu J.Q., Fu M.C., Marcus S.I.: A model reference adaptive search method for global optimization. Oper. Res. 55(3), 549–568 (2007) · Zbl 1167.90690
[133] Hua J.Z., Brennecke J.F., Stadtherr M.A.: Reliable computation for phase stability using interval analysis: cubic equation of state models. Comput. Chem. Eng. 22(9), 1207 (1998a)
[134] Hua J.Z., Brennecke J.F., Stadtherr M.A.: Enhanved interval analysis for phase stability: cubic equation of state models. Ind. Eng. Chem. Res. 37, 1519 (1998b)
[135] Huang D., Allen T.T., Notz W.I., Zeng N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006) · Zbl 1098.90097
[136] Jiao H.W., Guo Y.R., Shen P.P.: Global optimization of generalized linear fractional programming with nonlinear constraints. Appl. Math. Comput. 183(2), 717–728 (2006) · Zbl 1111.65052
[137] Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345 (2001) · Zbl 1172.90492
[138] Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455 (1998) · Zbl 0917.90270
[139] Kallrath, J.: Exact computation of global minima of a noncovex portfolio optimization problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 237–254. Kluwer Academic Publishers (2003) · Zbl 1176.90468
[140] Kallrath J.: Solving planning and design problems in the process industry using mixed integer and global optimization. Ann. Oper. Res. 140(1), 339–373 (2005) · Zbl 1091.90089
[141] Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. (2008,in press) · Zbl 1169.90434
[142] Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)
[143] Karuppiah R., Grossmann I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32, 145–160 (2008a)
[144] Karuppiah R., Grossmann I.E.: A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41(2), 163–186 (2008b) · Zbl 1145.90055
[145] Karuppiah, R., Furman, K.C., Grossmann, I.E.: Global optimization for scheduling refinery crude oil operations. Comput. Chem. Eng. (2008,in press)
[146] Kesavan P., Barton P.I.: Generalized branch-and-cut framework for mixed-integer nonlinear optimization problems. Comput. Chem. Eng. 24, 1361–1366 (2000)
[147] Kesavan P., Allgor R.L., Gadzke E.P., Barton P.I.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear problems. Math. Program. 100(3), 517–535 (2004) · Zbl 1136.90024
[148] Klepeis J.L., Floudas C.A.: A comparative study of global minimum energy conformations of hydrated peptides. J. Comput. Chem. 20(6), 636 (1999a)
[149] Klepeis J.L., Floudas C.A.: Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys. 110(15), 7491 (1999b) · Zbl 0931.92014
[150] Klepeis J.L., Floudas C.A.: Ab initio tertiary structure prediction of proteins. J. Glob. Optim. 25, 113 (2003a) · Zbl 1045.92018
[151] Klepeis J.L., Floudas C.A.: ASTRO-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino-acid sequence. Biophys. J. 85, 2119 (2003b)
[152] Klepeis J.L., Androulakis I.P., Ierapetritou M.G., Floudas C.A.: Predicting solvated peptide conformations via global minimization of energetic atom to atom interactions. Comput. Chem. Eng. 22(6), 765–788 (1998)
[153] Klepeis J.L., Floudas C.A., Morikis D., Lambris J.D.: Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem. 20, 1354 (1999)
[154] Klepeis J.L., Schafroth H.D., Westerberg K.M., Floudas C.A.: Deterministic global optimization and ab initio approaches for the structure prediction of polypeptides, dynamics of protein folding and protein-protein interactions. Adv. Chem. Phys. 120, 266–457 (2002)
[155] Klepeis J.L., Pieja M., Floudas C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: integrated hybrids. Comput. Phys. Commun. 151, 121 (2003a) · Zbl 1196.90134
[156] Klepeis J.L., Pieja M., Floudas C.A.: A new class of hybrid global optimization algorithms for peptide structure prediction: alternating hybrids and application to Met-Enkephalin and Melittin. Biophys. J. 84, 869 (2003b) · Zbl 1196.90134
[157] Lee, C.K., Barton, P.I.: Global dynamic optimization of linear hybrid systems. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 289–312. Kluwer Academic Publishers (2003) · Zbl 1176.90619
[158] Lee A., Grossmann I.E.: A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Comput. Chem. Eng. 25, 1675–1697 (2001)
[159] Lee S., Grossmann I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27(11), 1557–1575 (2003)
[160] Lee S., Grossmann I.E.: Logic-based modeling and solution of ninlinear discrete/continuous optimization problems. Ann. Oper. Res. 139(1), 267–288 (2005) · Zbl 1091.90056
[161] Lee C.K., Singer A.B., Barton P.I.: Global optimization of linear hybrid systems with explicit transitions. Syst. Control Lett. 51(5), 363–375 (2004) · Zbl 1157.93442
[162] Levitin E., Tichatschke R.: A branch-and-bound approach for solving a class of generalized semi-infinite programming problems. J. Glob. Optim. 13(3), 299–315 (1998) · Zbl 0912.90274
[163] Li H.L., Tsai J.F.: Treating free variables in generalized geometric global optimization programs. J. Glob. Optim. 33(1), 1–13 (2005) · Zbl 1116.90096
[164] Li D., Wu Z.Y., Lee H.W.J., Wang X.M., Zhang L.S.: Hidden convex minimization. J. Glob. Optim. 31(2), 211–233 (2005) · Zbl 1090.90156
[165] Li T., Wang Y.J., Liang Z., Pardalos P.M.: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Glob. Optim. 38(3), 405–419 (2007) · Zbl 1175.90317
[166] Li H.L., Tsai J.F., Floudas C.A.: Convex underestimation for posynomial functions of positive variables. Optim. Lett. 2(3), 333–340 (2008) · Zbl 1152.90610
[167] Liang Z.A., Huang H.X., Pardalos P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110(3), 611–619 (2001) · Zbl 1064.90047
[168] Liberti L.: Linearity embedded in nonconvex programs. J. Glob. Optim. 33(2), 157–196 (2005) · Zbl 1124.90026
[169] Liberti, L., Maculan, N.: Global Optimization: From Theory to Implementation. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2006) · Zbl 1087.90005
[170] Liberti L., Pantelides C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003) · Zbl 1030.90117
[171] Lin Y.D., Stadtherr M.A.: LP strategy for the interval-Newton method in deterministic global optimization. Ind. Eng. Chem. Res. 43(14), 3741–3749 (2004a)
[172] Lin Y.D., Stadtherr M.A.: Advances in interval methods for deterministic global optimization in chemical engineering. J. Glob. Optim. 29(3), 281–296 (2004b) · Zbl 1065.65076
[173] Lin Y.D., Stadtherr M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45(25), 8438–8448 (2006)
[174] Lin Y.D., Stadtherr M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007)
[175] Lin X.X., Floudas C.A., Kallrath J.: Global solution approach for a nonconvex MINLP problem in product portfolio optimization. J. Glob. Optim. 32(3), 417–431 (2005) · Zbl 1098.90098
[176] Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005) · Zbl 1099.90039
[177] Liu G.X.: A homotopy interior point method for semi-infinite programming problems. J. Glob. Optim. 37(4), 631–646 (2007) · Zbl 1149.90160
[178] Liu W.B., Floudas C.A.: A remark on the GOP algorithm for global optimization. J. Glob. Optim. 3(4), 519–521 (1993) · Zbl 0785.90089
[179] Liu Y., Teo K.L.: An adaptive dual parametrization algorithm for quadratic semi-infinite programming problems. J. Glob. Optim. 24(2), 205–217 (2002) · Zbl 1047.90049
[180] Liu Y., Teo K.L., Wu S.Y.: A new quadratic semi-infinite programming algorithm based on dual parametrization. J. Glob. Optim. 29(4), 401–413 (2004) · Zbl 1083.90042
[181] Long C.E., Polisetty P.K., Gatzke E.P.: Nonlinear model predictive control using deterministic global optimization. J. Process Control 16(6), 635–643 (2006)
[182] Long C.E., Polisetty P.K., Gatzke E.P.: Deterministic global optimization for nonlinear model predictive control of hybrid dynamic systems. Int. J. Robust Nonlinear Control 17(13), 1232–1250 (2007) · Zbl 1266.93045
[183] Lucia A., Feng Y.: Global terrain methods. Comput. Chem. Eng. 26, 529–546 (2002)
[184] Lucia A., Feng Y.: Multivariable terrain methods. AIChE J. 49, 2553 (2003)
[185] Lucia A., DiMaggio P.A., Bellows M.L., Octavio L.M.: The phase behavior of n-alkane systems. Comput. Chem. Eng. 29(11–12), 2363–2379 (2005)
[186] Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. (2008, in press) · Zbl 1169.90453
[187] Luo Y.Q., Yuan X.G., Liu Y.J.: An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)
[188] Maier R.W., Brennecke J.F., Stadtherr M.A.: Reliable computation of homogeneous azeotropes. AIChE J. 44, 1745–1755 (1998)
[189] Maranas C.D., Floudas C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–370 (1997)
[190] Marcovecchio M.G., Bergamini M.L., Aguirre P.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. J. Glob. Optim. 34(3), 339–368 (2006) · Zbl 1098.90094
[191] Maringer, D., Parpas, P.: Global optimization of higher order moments in portfolio selection. J. Glob. Optim. (2008, in press) · Zbl 1169.90454
[192] Martinez J.A., Casado L.G., Garcia I., Sergeyev Y.D., Toth B.: On an efficient use of gradient information for accelerating interval global optimization algorithms. Numer. Algorithms 37(1–4), 61–69 (2004) · Zbl 1078.65053
[193] McKinnon K., Mongeau M.: A generic global optimization algorithm for the chemical and phase equilibrium problem. J. Glob. Optim. 12, 325–351 (1998) · Zbl 0909.90273
[194] Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers (2003) · Zbl 1176.90469
[195] Meyer C.A., Floudas C.A.: Convex hull of trilinear monomials with mixed-sign domains. J. Glob. Optim. 29, 125–155 (2004) · Zbl 1085.90047
[196] Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005a) · Zbl 1099.90045
[197] Meyer C.A., Floudas C.A.: Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline {\(\alpha\)}BB underestimators. J. Glob. Optim. 32, 221–258 (2005b) · Zbl 1080.90059
[198] Meyer C.A., Floudas C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52, 1027–1037 (2006)
[199] Meyer C.A., Swartz C.L.E.: A regional convexity test for global optimization: application to the phase equilibrium problem. Comput. Chem. Eng. 22, 1407–1418 (1998)
[200] Meyer C.A., Floudas C.A., Neumaier A.: Global optimization with nonfactorable constraints. Ind. Eng. Chem. Res. 41, 6413–6424 (2002)
[201] Migdalas, A., Pardalos, P.M., Varbrand, P.: From Local to Global Optimization. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2001)
[202] Mitsos A., Barton P.I.: A dual extremum principle in thermodynamics. AIChE J. 53(8), 2131–2147 (2007)
[203] Mitsos A., Lemonidis P., Lee C.K., Barton P.I.: Global solution of bilevel programs with a nonconvex inner program. SIAM J. Optim. 19(1), 77–113 (2008a) · Zbl 1163.90035
[204] Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. (2008b, in press) · Zbl 1163.90700
[205] Moles C.G., Gutierrez G., Alonso A.A., Banga J.R.: Integrated process design and control via global optimization. Ind. Eng. Chem. Res. 81, 507–517 (2003)
[206] Moloi N.P., Ali M.M.: An iterative global optimization algorithm for potential energy minimization. Comput. Optim. Appl. 30(2), 119–132 (2005) · Zbl 1066.90093
[207] Montagna J.M., Iribarren O.A., Vecchietti A.R.: Synthesis of biotechnological processes using generalized disjunctive programming. Ind. Eng. Chem. Res. 43(15), 4220–4232 (2004)
[208] Munawar S.A., Gudi R.D.: A nonlinear transformation based hybrid evolutionary method for MINLP solution. Chem. Eng. Res. Des. 83(A10), 1218–1236 (2005)
[209] Nahapetyan A., Pardalos P.M.: A bilinear relaxation based algorithm for concave piecewise linear network flow problems. J. Ind. Manag. Optim. 3(1), 71–85 (2007) · Zbl 1166.90360
[210] Nahapetyan A., Pardalos P.M.: A bilinear reduction based algorithm for solving capacitated multi-item dynamic pricing problems. Comput. Oper. Res. 35(5), 1601–1612 (2008) · Zbl 1278.90050
[211] Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica, pp. 271–369. Cambridge University Press (2004) · Zbl 1113.90124
[212] Neumaier A., Shcherbina O., Huyer W., Vinko T.: A comparison of complete global optimization solvers. Math. Program. 103(2), 335–356 (2005) · Zbl 1099.90001
[213] Nichita D.V., Gomez S., Luna-Ortiz E.: Multiphase equilibria calculation by direct minimization of Gibbs free energy using tunneling global optimization method. J. Can. Petrol. Technol. 43(5), 13–16 (2004)
[214] Nichita D.V., Valencia C.D.D., Gomez S.: Volume-based thermodynamics global phase stability analysis. Chem. Eng. Commun. 193(10), 1194–1216 (2006)
[215] Nie J., Demmel J., Gu M.: Global minimization of rational functions and the nearest GCDs. J. Glob. Optim. 40(4), 697–718 (2008) · Zbl 1138.90030
[216] Noureldin M.B., El-Halwagi M.: Interval-based targeting for pollution prevention via mass integration. Comput. Chem. Eng. 23, 1527–1543 (1999)
[217] Ostrovsky G.M., Achenie L.E.K., Sinha M.: On the solution of mixed-integer nonlinear programming models for computer aided molecular design. Comput. Chem. Eng. 26, 645–660 (2002)
[218] Ostrovsky G.M., Achenie L.E.K., Sinha M.: A reduced dimension branch-and-bound algorithm for molecular design. Comput. Chem. Eng. 27, 551–567 (2003)
[219] Papamichail I., Adjiman C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002) · Zbl 1026.90071
[220] Papamichail I., Adjiman C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28(3), 403–415 (2004) · Zbl 1165.49306
[221] Papamichail I., Adjiman C.S.: Proof of convergence for a global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 33(1), 83–107 (2005) · Zbl 1093.90060
[222] Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, vol. 2. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2002) · Zbl 0991.00017
[223] Pardalos P.M., Shylo O.V.: An algorithm for the job shop scheduling problem based on global equilibrium search techniques. Comput. Manag. Sci. 3(4), 331–348 (2006) · Zbl 1136.90017
[224] Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124(1–2), 209–228 (2000) · Zbl 0969.90067
[225] Pardalos P.M., Chaovalitwongse W., Iasemidis L.D., Sackellares J.C., Shiau D.S., Carney P.R., Prokopyev O.A., Yatsenko V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2), 365–385 (2004) · Zbl 1055.92031
[226] Pardalos P.M., Prokopyev O.A., Shylo O.V., Shylo V.P.: Global equilibrium search applied to the unconstrained binary quadratic optimization problem. Optim. Methods Softw. 23(1), 129–140 (2008) · Zbl 1145.90430
[227] Parpas P., Rustem B., Pistikopoulos E.N.: Linearly constrained global optimization and stochastic differential equations. J. Glob. Optim. 36(2), 191–217 (2006) · Zbl 1131.90037
[228] Parpas, P., Rustem, B., Pistikopoulos, E.N.: Global optimization of robust chance constrained problems. J. Glob. Optim. (2008, in press) · Zbl 1190.90113
[229] Parthasarathy G., El-Halwagi M.: Optimum mass integration strategies for condensation and allocation of multicomponent VOCs. Comput. Chem. Eng. 55, 881–895 (2000)
[230] Pistikopoulos, E.N., Dua, V., Ryu, J.: Global optimization of bilevel programming problems via parametric programming. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 457–476. Kluwer Academic Publishers (2003) · Zbl 1048.90159
[231] Pörn R., Westerlund T.: A cutting plane method for minimizing pseudo-convex functions in mixed integer case. Comput. Chem. Eng. 24, 2655–2665 (2000)
[232] Pörn R., Harjunkoski I., Westerlund T.: Convexification of different classes of non-convex MINLP problems. Comput. Chem. Eng. 23, 439–448 (1999)
[233] Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer (2005) · Zbl 1186.90004
[234] Prokopyev O.A., Huang H.X., Pardalos P.M.: On complexity of unconstrained hyperbolic 0-1 programming problems. Oper. Res. Lett. 33(3), 312–318 (2005a) · Zbl 1140.90469
[235] Prokopyev O.A., Meneses C.N., Oliveira C.A.S., Pardalos P.M.: On multiple-ratio hyperbolic 0-1 programming problems. Pacific J. Optim. 1(2), 327–345 (2005b) · Zbl 1105.90094
[236] Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Glob. Optim. (2008, in press) · Zbl 1169.90417
[237] Regis R.G., Shoemaker C.A.: COnstrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005) · Zbl 1274.90511
[238] Regis R.G., Shoemaker C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007) · Zbl 1149.90120
[239] Rubinov, A.: Abstract Convexity and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000) · Zbl 0985.90074
[240] Ryoo H.S., Sahinidis N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001) · Zbl 0982.90054
[241] Ryoo H.S., Sahinidis N.V.: Global optimization of multiplicative programs. J. Glob. Optim. 26, 387–418 (2003) · Zbl 1052.90091
[242] Ryu J.H., Dua V., Pistikopoulos E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput. Chem. Eng. 28(6–7), 1121–1129 (2004) · Zbl 1048.90159
[243] Sahinidis N.V., Tawarmalani M.: Applications of global optimization to process and molecular design. Comput. Chem. Eng. 24, 2157–2169 (2000)
[244] Sahinidis N.V., Tawarmalani M., Yu M.: Design of alternative refrigerants via global optimization. AIChE J. 49(7), 1761 (2003)
[245] Sawaya N.W., Grossmann I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)
[246] Sawaya N.W., Grossmann I.E.: Computational implementation of non-linear convex hull reformulation. Comput. Chem. Eng. 31(7), 856–866 (2007)
[247] Schafroth H.D., Floudas C.A.: Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization. Proteins: Struct. Funct. Bioinform. 54, 534–556 (2004)
[248] Schichl H.: Global optimization in the COCONUT project. In: Numerical Software with Results Verification, Lecture Notes in Computer Science 2991, pp.243–249. Springer (2004) · Zbl 1126.65318
[249] Scurto A.M., Xu G., Brennecke J.F., Stadtherr M.A.: Phase behavior and reliable computation of high-pressure solid-fluid equilibrium with cosolvents. Ind. Eng. Chem. Res. 42(25), 6464–6475 (2003)
[250] Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science 2861, pp. 211–222. Springer (2003) · Zbl 1296.90004
[251] Shectman J.P., Sahinidis N.V.: A finite algorithm for global optimization of separable concave functions. J. Glob. Optim. 12, 1–36 (1998) · Zbl 0906.90159
[252] Shen P.P.: Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 162, 353–370 (2005) · Zbl 1071.65089
[253] Shen P.P., Yuan G.X.: Global optimization for the sum of generalized polynomial fractional functions. Math. Methods Oper. Res. 65(3), 445–459 (2007) · Zbl 1180.90331
[254] Sherali H.D.: Global optimization of nonconvex polynomial programming problems having rational exponents. J. Glob. Optim. 12(3), 267–283 (1998) · Zbl 0905.90146
[255] Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for solving Discrete and Coninuous Nonconvex Problems. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (1999) · Zbl 0926.90078
[256] Sherali H.D., Desai J.: A global optimization RLT-based approach for solving the hard clustering problem. J. Glob. Optim. 32(2), 281–306 (2005a) · Zbl 1123.62045
[257] Sherali H.D., Desai J.: A global optimization RLT-based approach for solving the fuzzy clustering problem. J. Glob. Optim. 33(4), 597–615 (2005b) · Zbl 1097.90072
[258] Sherali H.D., Fraticelli B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22(1–4), 233–261 (2002) · Zbl 1045.90044
[259] Sherali H.D., Ganesan V.: A pseudo-global optimization approach with application to the design of conteinerships. J. Glob. Optim. 26(4), 335–360 (2003) · Zbl 1023.90528
[260] Sherali H.D., Wang H.J.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001) · Zbl 0985.90073
[261] Sherali H.D., Adams W.P., Driscoll P.J.: Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46(3), 396–405 (1998) · Zbl 0979.90090
[262] Sherali H.D., Smith J.C., Adams W.P.: Reduced first-level representations via the reformulation-linearization technique: Results, counterexamples, and computations. Discrete Appl. Math. 101(1–3), 247–267 (2000) · Zbl 0946.90056
[263] Sherali H.D., Subramanian S., Loganathan G.V.: Effective relaxations and partitioning schemes for solving water distribution network design problems to global optimality. J. Glob. Optim. 19(1), 1–26 (2001) · Zbl 0967.90087
[264] Sherali H.D., Al-Loughani I., Subramani S.: Global optimization procedures for the capacitated euclidean and l(p) distance multifacility location-allocation problems. Oper. Res. 50(3), 433–448 (2002) · Zbl 1163.90615
[265] Sherali H.D., Lee Y., Kim Y.: Partial convexification cuts for 0-1 mixed-integer programs. Eur. J. Oper. Res. 165(3), 625–648 (2005) · Zbl 1062.90040
[266] Singer, A.B., Barton, P.I.: Global solution of optimization problems with dynamic systems embedded. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 477–498. Kluwer Academic Publishers (2003) · Zbl 1065.49020
[267] Singer A.B., Barton P.I.: Global solution of optimization problems with parameter-embedded linear dynamic systems. J. Optim. Theory Appl. 121(3), 613–646 (2004) · Zbl 1107.90035
[268] Singer A.B., Barton P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34(2), 159–190 (2006) · Zbl 1091.49028
[269] Singer A.B., Taylor J.W., Barton P.I., Green W.H.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. A 110(3), 971–976 (2006)
[270] Sinha M., Achenie L.E.K., Ostrovsky G.V.: Environmentaly benign solvent design by global optimization. Comput. Chem. Eng. 23, 1381–1394 (1999)
[271] Sinha M., Achenie L.E.K., Gani R.: Blanket wash solvent blent design using interval analysis. Ind. Eng. Chem. Res. 42, 516–527 (2003)
[272] Solodov M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18(1), 242–259 (2007) · Zbl 1145.90082
[273] Srinivas M., Rangaiah G.P.: Implementation and evaluation of random tunneling algorithm for chemical engineering applications. Comput. Chem. Eng. 30(9), 1400–1415 (2006)
[274] Srinivas M., Rangaiah G.P.: Differential evolution with tabu list for global optimization and its application to phase equilibrium and parameter estimation problems. Ind. Eng. Chem. Res. 46(10), 3410–3421 (2007)
[275] Stein O., Oldenburg J., Marquardt W.: Continuous reformulations of discrete-continuous optimization problems. Comput. Chem. Eng. 28(10), 1951–1966 (2004)
[276] Storn R., Price K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997) · Zbl 0888.90135
[277] Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints – Sequential and Parallel Algorithms. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2000) · Zbl 0987.90068
[278] Sun X.L., Li D., McKinnon K.I.M.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J. Optim. 15(4), 1128–1146 (2005) · Zbl 1114.90099
[279] Tan M.P., Broach J.R., Floudas C.A.: A novel clustering approach and prediction of optimal number of clusters: global optimum search with enhanced positioning. J. Glob. Optim. 39, 323–346 (2007a) · Zbl 1149.90108
[280] Tan M.P., Broach J.R., Floudas C.A.: Evaluation of normalization and pre-clustering issues in a novel clustering approach: global optimum search with enhanced positioning. J. Bioinform. Comput. Biol. 5(4), 875–893 (2007b) · Zbl 05427768
[281] Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer Academic Publishers (2003) · Zbl 1176.90473
[282] Tardella F.: Existence and sum decomposition of vertex polyhedral envelopes. Optim. Lett. 2(3), 363–375 (2008) · Zbl 1152.90614
[283] Tawarmalani M., Sahinidis N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 137–158 (2001) · Zbl 1001.90064
[284] Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and its Applications. Kluwer Academic Publishers (2002a) · Zbl 1031.90022
[285] Tawarmalani M., Sahinidis N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93, 247–263 (2002b) · Zbl 1065.90062
[286] Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004) · Zbl 1062.90041
[287] Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005) · Zbl 1099.90047
[288] Tawarmalani M., Ahmed S., Sahinidis N.V.: Product disaggregation in global optimization and relaxations of rational programs. J. Glob. Optim. 3, 281–303 (2002a) · Zbl 1035.90064
[289] Tawarmalani M., Ahmed S., Sahinidis N.V.: Global optimization of 0-1 hyperbolic programs. J. Glob. Optim. 24, 385–416 (2002b) · Zbl 1046.90054
[290] Tessier S.R., Brennecke J.F., Stadtherr M.A.: Reliable phase stability analysis for excess Gibbs energy models. Chem. Eng. Sci. 55, 1785 (2000)
[291] Törn, A., Zilinskas J.: Models and Algorithms for Global Optimization. Optimization and Its Applications. Springer (2007)
[292] Tsai J.F.: Global optimization of nonlinear fractional programming problems in engineering design. Eng. Optim. 37(4), 399–409 (2005)
[293] Tsai J.F., Lin M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30(8), 1256–1263 (2006)
[294] Tsai J.F., Lin M.H.: Finding all solutions of systems of nonlinear equations with free variables. Eng. Optim. 39(6), 649–659 (2007)
[295] Tsai J.F., Lin M.H., Hu Y.C.: On generalized geometric programming problems with non-positive variables. Eur. J. Oper. Res. 178(1), 10–19 (2007) · Zbl 1109.90050
[296] Tuy, H.: Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (1998) · Zbl 0904.90156
[297] Tuy H., Trach P.T., Konno H.: Optimization of polynomial fractional functions. J. Glob. Optim. 29(1), 19–44 (2004) · Zbl 1073.90049
[298] Tuy H., Migdalas A., Hoai-Phuong N.T.: A novel approach to bilevel nonlinear programming. J. Glob. Optim. 38(4), 527–554 (2007) · Zbl 1145.90083
[299] Ulas S., Diwekar U.M., Stadtherr M.A.: Uncertainties in parameter estimation and optimal control in batch distillation. Comput. Chem. Eng. 29(8), 1805–1814 (2005)
[300] Vaia A., Sahinidis N.V.: Simultaneous parameter estimation and model structure determination in FTIR spectroscopy by global MINLP optimization. Comput. Chem. Eng. 27, 763–779 (2003)
[301] Van Antwerp J.G., Braatz R.A., Sahinidis N.V.: Globally optimal robust process control. J. Process Control 9, 375–383 (1999)
[302] Vecchietti A., Grossmann I.E.: LOGMIP: a disjunctive 0-1 nonlinear optimizer for process systems models. Comput. Chem. Eng. 23, 555–565 (1999)
[303] Vecchietti A., Lee S., Grossmann I.E.: Modeling of discrete/continuous optimization problems: characterization and formulation of disjunctions and their relaxations. Comput. Chem. Eng. 27(3), 433–448 (2003)
[304] Wales D.J., Scheraga H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285(5432), 1368–1372 (1999)
[305] Wang Y.J., Achenie L.E.K.: A hybrid global optimization approach for solvent design. Comput. Chem. Eng. 26, 1415–1425 (2002a)
[306] Wang Y.J., Achenie L.E.K.: Computer-aided solvent design for extractive fermentation. Fluid Phase Equilib. 201, 1–18 (2002b)
[307] Wang Y.J., Liang Z.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168, 722–737 (2005) · Zbl 1105.65335
[308] Wang Y.J., Shen P.P., Liang Z.: A branch-and-bound algorithm to globally solve the sum of several linear ratios. Appl. Math. Comput. 168(1), 89–101 (2005) · Zbl 1079.65071
[309] Westerberg K.M., Floudas C.A.: Locating all transition states and Studying the reaction pathways of potential energy surfaces. J. Chem. Phys. 110(18), 9259 (1999a) · Zbl 0946.90115
[310] Westerberg K.M., Floudas C.A.: Dynamics of peptide folding: transition states and reaction pathways of solvated and unsolvated tetra-alanine. J. Glob. Optim. 15, 261 (1999b) · Zbl 0946.90115
[311] Westerlund, T.: Some transformation techniques in global optimization. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 45–74. Springer (2006) · Zbl 1100.90037
[312] Westerlund T., Skrifvars H., Harjunkoski I., Pörn R.: An extended cutting plane method for a class of non-convex MINLP problems. Comput. Chem. Eng. 22(3), 357–365 (1998) · Zbl 0955.90095
[313] Wu Z.Y., Bai F.S., Zhang L.S.: Convexification and concavification for a general class of global optimization problems. J. Glob. Optim. 31(1), 45–60 (2005a) · Zbl 1274.90284
[314] Wu Z.Y., Lee H.W.J., Yang X.M.: A class of convexification and concavification methods for non-monotone optimization problems. Optimization 54(6), 605–625 (2005b) · Zbl 1147.90400
[315] Wu Z.Y., Li D., Zhang L.S., Wang X.M.: Peeling off a nonconvex cover of an actual convex problem: hidden convexity. SIAM J. Optim. 18(2), 507–536 (2007) · Zbl 1211.90241
[316] Xu Z., Huang H.X., Pardalos P.M., Xu C.X.: Filled functions for unconstrained global optimization. J. Glob. Optim. 20(1), 49–65 (2001) · Zbl 1049.90092
[317] Xu G., Brennecke J.F., Stadtherr M.A.: Reliable computation of phase stability and equilibrium from the SAFT equation of state. Ind. Eng. Chem. Res. 41, 938 (2002)
[318] Yamada Y., Hara S.: Global optimization for H-infinity control with constant diagonal scaling. IEEE Trans. Automatic Control 43, 191–203 (1998) · Zbl 0905.93016
[319] Yamamoto R., Konno H.: An efficient algorithm for solving convex-convex quadratic fractional programs. J. Optim. Theory Appl. 133(2), 241–255 (2007) · Zbl 1151.90560
[320] Yan L.X., Shen K., Hu S.H.: Solving mixed integer nonlinear programming problems with line-up competition algorithm. Comput. Chem. Eng. 28(12), 2647–2657 (2004)
[321] Young C.T., Zheng Y., Yeh C.W., Jang S.S.: Information-guided genetic algorithm approach to the solution of MINLP problems. Ind. Eng. Chem. Res. 46(5), 1527–1537 (2007)
[322] Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers (2003) · Zbl 1044.90001
[323] Zakovic S., Rustem B.: Semi-infinite programming and applications to minimax problems. Ann. Oper. Res. 124(1–4), 81–110 (2003) · Zbl 1074.90554
[324] Zamora J.M., Grossmann I.E.: A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput. Chem. Eng. 22(3), 367–384 (1998a)
[325] Zamora J.M., Grossmann I.E.: Continuous global optimization of structured process systems models. Comput. Chem. Eng. 22(12), 1749–1770 (1998b)
[326] Zamora J.M., Grossmann I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–219 (1999) · Zbl 0949.90097
[327] Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization. Optimization and Its Applications. Springer (2007) · Zbl 1136.90003
[328] Zhu W.X., Fu Q.X.: A sequential convexification method (SCM) for continuous global optimization. J. Glob. Optim. 26, 167–182 (2003) · Zbl 1049.90069
[329] Zhu Y., Inoue K.: Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chem. Eng. Sci. 56, 6915 (2001)
[330] Zhu Y., Kuno T.: Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised generalized benders decomposition approach. Ind. Eng. Chem. Res. 42, 528–539 (2003)
[331] Zhu Y., Kuno T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0-1 mixed-integer convex nonlinear programs. Ind. Eng. Chem. Res. 45(1), 187–196 (2006)
[332] Zhu Y., Xu Z.: A reliable prediction of the global phase stability for liquid-liquid equilibrium through the simulated anneling algorithm: application to NRTL and UNIQUAC equations. Fluid Phase Equilib. 154, 55–69 (1999a)
[333] Zhu Y., Xu Z.: Lipschitz optimization for phase stability analysis: application to Soave-Redlich-Kwong equation of state. Fluid Phase Equilib. 162, 19–29 (1999b)
[334] Zhu Y., Xu Z.: A reliable method for liquid-liquid phase equilibrium calculation and global stability analysis. Comput. Chem. Eng. 176, 133–160 (1999c)
[335] Zhu Y., Wen H., Xu Z.: Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated anneling algorithm. Chem. Eng. Sci. 55, 3451 (2000)
[336] Zilinskas J., Bogle I.D.L.: Evaluation ranges of functions using balanced random interval arithmetic. Informatica Lithuan 14(3), 403–416 (2003) · Zbl 1176.90564
[337] Zlobec S.: On the Liu-FLoudas convexification of smooth programs. J. Glob. Optim. 32(3), 401–407 (2005) · Zbl 1149.90409
[338] Zlobec S.: Characterization of convexifiable functions. Optimization 55(3), 251–261 (2006) · Zbl 1124.90038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.