×

zbMATH — the first resource for mathematics

Exact solutions for a generalized nonlinear fractional Fokker-Planck equation. (English) Zbl 1181.35293
Summary: This paper is devoted to investigating a generalized nonlinear Fokker-Planck diffusion equation with external force and absorption. We first investigate the integer nonlinear anomalous diffusion, and we obtain the corresponding exact solution expressed by \(q\)-exponential function. The solutions of nonlinear diffusion equation with one-fractional derivative and multi-fractional derivative are also studied in detail, and the solutions can have a compact behavior or a long tailed behavior.

MSC:
35Q84 Fokker-Planck equations
35R11 Fractional partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35C05 Solutions to PDEs in closed form
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tsallis, C.; Lenzi, E.K., Anomalous diffusion: nonlinear fractional fokker – planck equation, Chem. phys., 284, 341-347, (2002)
[2] Lenzi, E.K.; Mendes, G.A.; Mendes, R.S., Exact solutions to nonlinear nonautonomous space fractional diffusion equations with absorption, Phys. rev. E, 67, 051109, (2003)
[3] Silva, A.T.; Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; da Silva, L.R., Fractional nonlinear diffusion equation solutions and anomalous diffusion, Physica A, 375, 65-71, (2007)
[4] Pascal, J.P.; Pascal, H., On nonlinear diffusion in fractal structures, Physica A, 208, 351-358, (1994)
[5] Stephenson, J., Some non-linear diffusion equations and fractal diffusion, Physica A, 222, 234-247, (1995)
[6] Schot, A.; Lenzi, M.K.; Evangelista, L.R., Fractional diffusion equation with an absorbent term and a linear external force: exact solution, Phys. lett. A, 366, 346-350, (2007)
[7] Bologna, M.; Tsallis, C.; Grigolini, P., Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: exact time-dependent solutions, Phys. rev. E, 62, 2213-2218, (2000)
[8] Zola, R.S.; Lenzi, M.K.; Evangelista, L.R.; Lenzi, E.K.; Lucena, L.S.; da Silva, L.R., Exact solutions for a diffusion equation with a nonlinear external force, Phys. lett. A, 372, 2359-2363, (2008) · Zbl 1220.82092
[9] Liang, J.; Ren, F.; Qiu, W.; Xiao, J., Exact solutions for nonlinear fractional anomalous diffusion equations, Physica A, 385, 80-94, (2007)
[10] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic press New York · Zbl 0428.26004
[11] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. rep., 339, 1-77, (2000) · Zbl 0984.82032
[12] Jiang, Xiaoyun; Xu, Mingyu, Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media, Internat. J. nonlinear mech., 41, 156-165, (2006)
[13] Wang, Shaowei; Xu, Mingyu, Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear anal. RWA, (2007) · Zbl 1167.76311
[14] Qi, Haitao; Xu, Mingyu, Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel, Mech. res. commun., 34, 210-212, (2007) · Zbl 1192.76008
[15] Yamano, T., Some properties of \(q\)-logarithm and \(q\)-exponential functions in Tsallis statistics, Physica A, 305, 486-496, (2002) · Zbl 1039.33502
[16] Tsallis, C.; Mendes, R.S.; Plastino, A.R., The role of constraints within generalized nonextensive statistics, Physica A, 261, 534-554, (1998)
[17] Tsallis, C.; Levy, S.V.F.; Souza, A.M.C.; Maynard, R., Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature, Phys. rev. lett., 75, 3589-3592, (1995) · Zbl 1020.82593
[18] Zanette, D.H.; Alemany, P.A., Thermodynamics of anomalous diffusion, Phys. rev. lett., 75, 366-369, (1995)
[19] Wenchang, Tan; Chaoqi, Fu; Ceji, Fu; Wenjun, Xie; Heping, Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. phys. lett., 91, 183901, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.