×

zbMATH — the first resource for mathematics

Function projective synchronization in coupled chaotic systems. (English) Zbl 1181.37039
Summary: The function projective synchronization is investigated in coupled partially linear chaotic systems. By Lyapunov stability theory, a control law is derived to make the state vectors asymptotically synchronized up to a desired scaling function. Furthermore, based on function projective synchronization, a scheme for secure communication is presented in theory. The corresponding numerical simulations are performed to verify and illustrate the analytical results.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37B25 Stability of topological dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 821-824, (1990) · Zbl 0938.37019
[2] Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. rev. lett., 76, 1804-1807, (1996)
[3] Rulkov, N.F.; Sushchik, M.M.; Tsimring, L.S., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E, 51, 980-994, (1995)
[4] Rosenblum, M.G.; Pikovsky, A.S.; Kurth, J., From phase to lag synchronization in coupled chaotic oscillators, Phys. rev. lett., 78, 4193-4196, (1997)
[5] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Phys. rev. lett., 82, 3042-3045, (1999)
[6] Xu, D., Control of projective synchronization in chaotic systems, Phys. rev. E, 63, 27201-27204, (2001)
[7] Xu, D.; Li, Z.; Bishop, S.R., Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, 11, 439-442, (2001) · Zbl 0996.37075
[8] Xu, D.; Chee, C.Y., Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. rev. E, 66, 046218, (2002)
[9] Li, Z.; Xu, D., Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. lett. A, 282, 175-179, (2001) · Zbl 0983.37036
[10] Xu, D.; Ong, W.L.; Li, Z., Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. lett. A, 305, 167-172, (2002) · Zbl 1001.37026
[11] Wen, G.; Xu, D., Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos solitons fractals, 26, 71-77, (2005) · Zbl 1122.93311
[12] Yan, J.; Li, C., Generalized projective synchronization of a unified chaotic system, Chaos solitons fractals, 26, 1119-1124, (2005) · Zbl 1073.65147
[13] Park, J.H., Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos solitons fractals, 34, 1552-1559, (2007) · Zbl 1152.93407
[14] Li, G.H., Modified projective synchronization of chaotic system, Chaos solitons fractals, 32, 1786-1790, (2007) · Zbl 1134.37331
[15] Chen, Y.; Li, X., Function projective synchronization between two identical chaotic systems, Internat. J. modern phys. C, 18, 883-888, (2007) · Zbl 1139.37301
[16] Chee, C.Y.; Xu, D., Secure digital communication using controlled projective synchronization of chaos, Chaos solitons fractals, 23, 1063-1070, (2005) · Zbl 1068.94010
[17] Li, Z.; Xu, D., A secure communication scheme using projective chaos synchronization, Chaos solitons fractals, 22, 477-481, (2004) · Zbl 1060.93530
[18] Hu, M.; Xu, Z., Adaptive feedback controller for projective synchronization, Nonlinear anal. real world appl., 9, 1253-1260, (2008) · Zbl 1144.93364
[19] Milioua, A.N.; Antoniadesa, I.P.; Stavrinides, S.G.; Anagnostopoulos, A.N., Secure communication by chaotic synchronization: robustness under noisy conditions, Nonlinear anal. real world appl., 8, 1003-1012, (2007) · Zbl 1187.94007
[20] Tang, X.; Lu, J.; Zhang, W., The FPS of chaotic system using backstepping design, China J. dynam. control, 5, 216-219, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.