zbMATH — the first resource for mathematics

Higher period stochastic bifurcation of nonlinear airfoil fluid-structure interaction. (English) Zbl 1181.37074
Summary: The higher period stochastic bifurcation of a nonlinear airfoil fluid-structure interaction system is analyzed using an efficient and robust uncertainty quantification method for unsteady problems. The computationally efficient numerical approach achieves a constant error with a constant number of samples in time. The robustness of the method is assured by the extrema diminishing concept in probability space. The numerical results demonstrate that the system is even more sensitive to randomness at the higher period bifurcation than in the first bifurcation point. In this isolated point in parameter space the clear hierarchy of increasing importance of the random nonlinearity parameter, initial condition, and natural frequency ratio, respectively, even suddenly reverses. Disregarding seemingly less important random parameters based on a preliminary analysis can, therefore, be an unreliable approach for reducing the number of relevant random input parameters.

37H20 Bifurcation theory for random and stochastic dynamical systems
37M20 Computational methods for bifurcation problems in dynamical systems
37N15 Dynamical systems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
Full Text: DOI EuDML
[1] R. H. Kraichnan, “Direct-interaction approximation for a system of several interacting simple shear waves,” Physics of Fluids, vol. 6, no. 11, pp. 1603-1609, 1963. · Zbl 0122.44204 · doi:10.1063/1.1710994
[2] S. A. Orszag and L. R. Bissonnette, “Dynamical properties of truncated Wiener-Hermite expansions,” Physics of Fluids, vol. 10, no. 12, pp. 2603-2613, 1967. · Zbl 0166.46204 · doi:10.1063/1.1762082
[3] R. Rubinstein and M. Choudhari, “Uncertainty quantification for systems with random initial conditions using Wiener-Hermite expansions,” Studies in Applied Mathematics, vol. 114, no. 2, pp. 167-188, 2005. · Zbl 1145.76391 · doi:10.1111/j.0022-2526.2005.01543.x
[4] E. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[5] C. Y. Shen, T. E. Evans, and S. Finette, “Polynomial-chaos applied to Lorenz’s model for quantification of growth of initial uncertainties,” in Proceedings of the 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS ’08), Venice, Italy, June 2008.
[6] R. Pulch, “Polynomial chaos for linear DAEs with random parameters,” preprint BUWAMNA 08/01, Bergische Universität Wuppertal, Wuppertal, Germany, 2008, http://www.math.uni-wuppertal.de/org/Num/Files/amna_08_01.pdf.
[7] E. F. Sheta, V. J. Harrand, D. E. Thompson, and T. W. Strganac, “Computational and experimental investigation of limit cycle oscillations of nonlinear aeroelastic systems,” Journal of Aircraft, vol. 39, no. 1, pp. 133-141, 2002. · doi:10.2514/2.2907
[8] D. M. Tang and E. H. Dowell, “Comparison of theory and experiment for nonlinear flutter and stall response of a helicopter blade,” Journal of Sound and Vibration, vol. 165, no. 2, pp. 251-276, 1993. · doi:10.1006/jsvi.1993.1256
[9] B. H. K. Lee, S. J. Price, and Y. S. Wong, “Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos,” Progress in Aerospace Sciences, vol. 35, no. 3, pp. 205-334, 1999. · doi:10.1016/S0376-0421(98)00015-3
[10] M. Kleiber and T. D. Hien, The Stochastic Finite Element Method. Basic Perturbation Technique and Computer Implementation, John Wiley & Sons, Chichester, UK, 1992. · Zbl 0902.73004
[11] R. Lind and M. J. Brenner, “Robust flutter margin analysis that incorporates flight data,” Tech. Rep. NASA/TP-1998-206543, NASA, Moffett Field, Calif, USA, 1998, http://www.nasa.gov/centers/dryden/pdf/88570main_H-2209.pdf.
[12] C. L. Pettit, “Uncertainty in aeroelasticity analysis, design and testing,” in Engineering Design Reliability Handbook, E. Nicolaidis and D. Ghiocel, Eds., CRC Press, Boca Raton, Fla, USA, 2004.
[13] D. G. Liaw and H. T. Y. Yang, “Reliability and nonlinear supersonic flutter of uncertain laminated plates,” AIAA Journal, vol. 31, no. 12, pp. 2304-2311, 1993. · Zbl 0800.73289 · doi:10.2514/3.11929
[14] A. Carcaterra, D. Dessi, and F. Mastroddi, “Hydrofoil vibration induced by a random flow: a stochastic perturbation approach,” Journal of Sound and Vibration, vol. 283, no. 1-2, pp. 401-432, 2005. · doi:10.1016/j.jsv.2004.04.040
[15] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuens Monographs on Applied Probability and Statistics, Methuen, London, UK, 1964. · Zbl 0121.35503
[16] N. J. Lindsley, P. S. Beran, and C. L. Pettit, “Effects of uncertainty on nonlinear plate aeroelastic response,” in Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colo, USA, April 2002, paper no. AIAA 2002-1271.
[17] N. J. Lindsley, C. L. Pettit, and P. S. Beran, “Nonlinear plate aeroelastic response with uncertain stiffness and boundary conditions,” Structure & Infrastructure Engineering, vol. 2, no. 3-4, pp. 201-220, 2006.
[18] D. Poirel and S. J. Price, “Random binary (coalescence) flutter of a two-dimensional linear airfoil,” Journal of Fluids and Structures, vol. 18, no. 1, pp. 23-42, 2003. · doi:10.1016/S0889-9746(03)00074-4
[19] P. S. Beran, C. L. Pettit, and D. R. Millman, “Uncertainty quantification of limit-cycle oscillations,” Journal of Computational Physics, vol. 217, no. 1, pp. 217-247, 2006. · Zbl 1147.76552 · doi:10.1016/j.jcp.2006.03.038
[20] F. Poirion, “On some stochastic methods applied to aeroservoelasticity,” Aerospace Science and Technology, vol. 4, no. 3, pp. 201-214, 2000. · Zbl 0979.74080 · doi:10.1016/S1270-9638(00)00118-8
[21] S. Choi and N. S. Namachchivaya, “Stochastic dynamics of a nonlinear aeroelastic system,” AIAA Journal, vol. 44, no. 9, pp. 1921-1931, 2006. · doi:10.2514/1.858
[22] S. De Rosa and F. Franco, “Exact and numerical responses of a plate under a turbulent boundary layer excitation,” Journal of Fluids and Structures, vol. 24, no. 2, pp. 212-230, 2008. · doi:10.1016/j.jfluidstructs.2007.07.007
[23] A. Sarkar and R. Ghanem, “Mid-frequency structural dynamics with parameter uncertainty,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 47-48, pp. 5499-5513, 2002. · Zbl 1083.74552 · doi:10.1016/S0045-7825(02)00465-6
[24] I. Babu\vska, R. Tempone, and G. E. Zouraris, “Galerkin finite element approximations of stochastic elliptic partial differential equations,” SIAM Journal on Numerical Analysis, vol. 42, no. 2, pp. 800-825, 2004. · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[25] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, New York, NY, USA, 1991. · Zbl 0722.73080
[26] J. A. S. Witteveen and H. Bijl, “A monomial chaos approach for efficient uncertainty quantification in nonlinear problems,” SIAM Journal on Scientific Computing, vol. 30, no. 3, pp. 1296-1317, 2008. · Zbl 1167.65072 · doi:10.1137/06067287X
[27] J. A. S. Witteveen and H. Bijl, “Efficient quantification of the effect of uncertainties in advection-diffusion problems using polynomial chaos,” Numerical Heat Transfer, Part B, vol. 53, no. 5, pp. 437-465, 2008. · doi:10.1080/10407790801960745
[28] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic differential equations,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 619-644, 2002. · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[29] I. Babu\vska, F. Nobile, and R. Tempone, “A stochastic collocation method for elliptic partial differential equations with random input data,” SIAM Journal on Numerical Analysis, vol. 45, no. 3, pp. 1005-1034, 2007. · Zbl 1151.65008 · doi:10.1137/050645142
[30] S. Hosder, R. W. Walters, and R. Perez, “A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations,” in Proceedings of the 44th AIAA Aerospace Sciences Meeting, pp. 10649-10667, Reno, Nev, USA, January 2006, paper no. AIAA-2006-891.
[31] G. J. A. Loeven and H. Bijl, “Probabilistic collocation used in a two-step approach for efficient uncertainty quantification in computational fluid dynamics,” Computer Modeling in Engineering & Sciences, vol. 36, no. 3, pp. 193-212, 2008. · Zbl 1232.76038 · doi:10.3970/cmes.2008.036.193
[32] L. Mathelin, M. Y. Hussaini, and T. A. Zang, “Stochastic approaches to uncertainty quantification in CFD simulations,” Numerical Algorithms, vol. 38, no. 1-3, pp. 209-236, 2005. · Zbl 1130.76062 · doi:10.1007/s11075-004-2866-z
[33] M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio, “Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection,” Combustion and Flame, vol. 132, no. 3, pp. 545-555, 2003. · doi:10.1016/S0010-2180(02)00503-5
[34] C. L. Pettit and P. S. Beran, “Effects of parametric uncertainty on airfoil limit cycle oscillation,” Journal of Aircraft, vol. 40, no. 5, pp. 1217-1229, 2004.
[35] C. L. Pettit and P. S. Beran, “Spectral and multiresolution Wiener expansions of oscillatory stochastic processes,” Journal of Sound and Vibration, vol. 294, no. 4, pp. 752-779, 2006. · doi:10.1016/j.jsv.2005.12.043
[36] O. P. Le Maître, O. M. Knio, H. N. Najm, and R. G. Ghanem, “Uncertainty propagation using Wiener-Haar expansions,” Journal of Computational Physics, vol. 197, no. 1, pp. 28-57, 2004. · Zbl 1052.65114 · doi:10.1016/j.jcp.2003.11.033
[37] X. Wan and G. E. Karniadakis, “Long-term behavior of polynomial chaos in stochastic flow simulations,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 41-43, pp. 5582-5596, 2006. · Zbl 1123.76058 · doi:10.1016/j.cma.2005.10.016
[38] D. R. Millman, P. I. King, and P. Beran, “Airfoil pitch-and-plunge bifurcation behavior with Fourier chaos expansions,” Journal of Aircraft, vol. 42, no. 2, pp. 376-384, 2005. · doi:10.2514/1.5550
[39] S. Sarkar, J. A. S. Witteveen, A. Loeven, and H. Bijl, “Effect of uncertainty on the bifurcation behavior of pitching airfoil stall flutter,” Journal of Fluids and Structures, vol. 25, no. 2, pp. 304-320, 2009. · doi:10.1016/j.jfluidstructs.2008.06.006
[40] J. A. S. Witteveen, S. Sarkar, and H. Bijl, “Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos,” Computers and Structures, vol. 85, no. 11-14, pp. 866-878, 2007. · doi:10.1016/j.compstruc.2007.01.004
[41] J. A. S. Witteveen, A. Loeven, S. Sarkar, and H. Bijl, “Probabilistic collocation for period-1 limit cycle oscillations,” Journal of Sound and Vibration, vol. 311, no. 1-2, pp. 421-439, 2008. · doi:10.1016/j.jsv.2007.09.017
[42] J. A. S. Witteveen and H. Bijl, “An unsteady adaptive stochastic finite elements formulation for rigid-body fluid-structure interaction,” Computers and Structures, vol. 86, no. 23-24, pp. 2123-2140, 2008. · doi:10.1016/j.compstruc.2008.06.009
[43] J. A. S. Witteveen and H. Bijl, “An alternative unsteady adaptive stochastic finite elements formulation based on interpolation at constant phase,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 3-4, pp. 578-591, 2008. · Zbl 1228.74098 · doi:10.1016/j.cma.2008.09.005
[44] J. A. S. Witteveen and H. Bijl, “A TVD uncertainty quantification method with bounded error applied to transonic airfoil flutter,” Communications in Computational Physics, vol. 6, pp. 406-432, 2009. · Zbl 1364.76198
[45] J. A. S. Witteveen and H. Bijl, “Effect of randomness on multi-frequency aeroelastic responses resolved by unsteady adaptive stochastic finite elements”. · Zbl 1175.65011 · doi:10.1016/j.jcp.2009.06.013
[46] R. E. Melchers, Structural Reliability: Analysis and Prediction, Ellis Horwood Series in Civil Engineering, Ellis Horwood, Chichester, UK, 1987.
[47] J. A. S. Witteveen, A. Loeven, and H. Bijl, “An adaptive stochastic finite elements approach based on Newton-Cotes quadrature in simplex elements,” Computers and Fluids, vol. 38, no. 6, pp. 1270-1288, 2009. · Zbl 1242.76145 · doi:10.1016/j.compfluid.2008.12.002
[48] B. H. K. Lee, L. Y. Jiang, and Y. S. Wong, “Flutter of an airfoil with a cubic nonlinear restoring force,” in Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, pp. 237-257, Long Beach, Calif, USA, April 1998.
[49] Y. Fung, An Introduction to Aeroelasticity, Dover, New York, NY, USA, 1969. · Zbl 1156.74001
[50] R. T. Jones, “The unsteady lift of a wing of finite aspect ratio,” NACA Report 681, National Advisory Committee for Aeronautics, Langley, Va, USA, 1940.
[51] B. H. K. Lee and P. LeBlanc, “Flutter analysis of a two-dimensional airfoil with cubic nonlinear restoring force,” Tech. Rep. NAE-AN-36 NRC-25438, National Research Council of Canada, Ottawa, Canada, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.