×

zbMATH — the first resource for mathematics

Description of interest regions with local binary patterns. (English) Zbl 1181.68237
Summary: This paper presents a novel method for interest region description. We adopted the idea that the appearance of an interest region can be well characterized by the distribution of its local features. The most well-known descriptor built on this idea is the SIFT descriptor that uses gradient as the local feature. Thus far, existing texture features are not widely utilized in the context of region description. In this paper, we introduce a new texture feature called Center-Symmetric Local Binary Pattern (CS-LBP) that is a modified version of the well-known Local binary Pattern (LBP) feature. To combine the strengths of the SIFT and LBP, we use the CS-LBP as the local feature in the SIFT algorithm. The resulting descriptor is called the CS-LBP descriptor. In the matching and object category classification experiments, our descriptor performs favorably compared to the SIFT. Furthermore, the CS-LBP descriptor is computationally simpler than the SIFT.

MSC:
68T10 Pattern recognition, speech recognition
Software:
PCA-SIFT; SIFT; SURF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Mikolajczyk, C. Schmid, Indexing based on scale invariant interest points, in: 8th IEEE International Conference on Computer Vision, vol. 1, 2001, pp. 525-531.
[2] Tuytelaars, T.; Gool, L.V., Matching widely separated views based on affine invariant regions, Int. J. comput. vision, 59, 1, 61-85, (2004)
[3] Lowe, D.G., Distinctive image features from scale-invariant keypoints, Int. J. comput. vision, 60, 2, 91-110, (2004)
[4] Lazebnik, S.; Schmid, C.; Ponce, J., A sparse texture representation using local affine regions, IEEE trans. pattern anal. Mach. intell., 27, 8, 1265-1278, (2005)
[5] S. Se, D. Lowe, J. Little, Global localization using distinctive visual features, in: IEEE/RSJ International Conference on Intelligent Robots and System, vol. 1, 2002, pp. 226-231.
[6] Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; Zisserman, A.; Matas, J.; Schaffalitzky, F.; Kadir, T.; Gool, L.V., A comparison of affine region detectors, Int. J. comput. vision, 65, 1/2, 43-72, (2005)
[7] Mikolajczyk, K.; Schmid, C., A performance evaluation of local descriptors, IEEE trans. pattern anal. Mach. intell., 27, 10, 1615-1630, (2005)
[8] Belongie, S.; Malik, J.; Puzicha, J., Shape matching and object recognition using shape contexts, IEEE trans. pattern anal. Mach. intell., 24, 4, 509-522, (2002)
[9] H. Bay, T. Tuytelaars, L.V. Gool, SURF: speeded up robust features, in: European Conference on Computer Vision, vol. 1, 2006, pp. 404-417.
[10] H. Ling, D.W. Jacobs, Deformation invariant image matching, in: 10th IEEE International Conference on Computer Vision, vol. 2, 2005, pp. 1466-1473.
[11] Y. Ke, R. Sukthankar, PCA-SIFT: a more distinctive representation for local image descriptors, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2004, pp. 506-513.
[12] Freeman, W.; Adelson, E., The design and use of steerable filters, IEEE trans. pattern anal. Mach. intell., 13, 9, 891-906, (1991)
[13] L.J.V. Gool, T. Moons, D. Ungureanu, Affine/photometric invariants for planar intensity patterns, in: 4th European Conference on Computer Vision, 1996, pp. 642-651.
[14] F. Schaffalitzky, A. Zisserman, Multi-view matching for unordered image sets, in: 7th European Conference on Computer Vision, 2002, pp. 414-431. · Zbl 1034.68662
[15] G. Carneiro, A.D. Jepson, Multi-scale phase-based local features, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 736-743.
[16] P. Moreels, P. Perona, Evaluation of features detectors and descriptors based on 3D objects, in: 10th IEEE International Conference on Computer Vision, vol. 1, 2005, pp. 800-807.
[17] S. Winder, M. Brown, Learning local image descriptors, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[18] Randen, T.; Husoy, J.H., Filtering for texture classification: a comparative study, IEEE trans. pattern anal. Mach. intell., 21, 291-310, (1999)
[19] Ojala, T.; Pietikäinen, M.; Harwood, D., A comparative study of texture measures with classification based on feature distributions, Pattern recognition, 29, 1, 51-59, (1996)
[20] Ojala, T.; Pietikäinen, M.; Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE trans. pattern anal. Mach. intell., 24, 971-987, (2002)
[21] \(\langle\)http://www.ee.oulu.fi/mvg/page/lbp_bibliography⟩.
[22] Ahonen, T.; Hadid, A.; Pietikäinen, M., Face description with local binary patterns: application to face recognition, IEEE trans. pattern anal. Mach. intell., 28, 12, 2037-2041, (2006)
[23] Heikkilä, M.; Pietikäinen, M., A texture-based method for modeling the background and detecting moving objects, IEEE trans. pattern anal. Mach. intell., 28, 4, 657-662, (2006)
[24] Pietikäinen, M.; Nurmela, T.; Mäenpää, T.; Turtinen, M., View-based recognition of real-world textures, Pattern recognition, 37, 2, 313-323, (2004) · Zbl 1059.68112
[25] M. Heikkilä, M. Pietikäinen, C. Schmid, Description of interest regions with center-symmetric local binary patterns, in: 5th Indian Conference on Computer Vision, Graphics and Image Processing, vol. 4338, 2006, pp. 58-69.
[26] T. Mäenpää, T. Ojala, M. Pietikäinen, M. Soriano, Robust texture classification by subsets of local binary patterns, in: 15th International Conference on Pattern Recognition, vol. 3, 2000, pp. 935-938.
[27] \(\langle\)http://www.robots.ox.ac.uk/∼vgg/research/affine/⟩.
[28] \(\langle\)http://www.pascal-network.org/challenges/VOC/voc2006⟩.
[29] Mikolajczyk, K.; Schmid, C., Scale & affine invariant interest point detectors, Int. J. comput. vision, 60, 1, 63-86, (2004)
[30] K. Mikolajczyk, C. Schmid, An affine invariant interest point detector, in: European Conference on Computer Vision, vol. 1, 2002, pp. 128-142. · Zbl 1034.68642
[31] Zhang, J.; Marszałek, M.; Lazebnik, S.; Schmid, C., Local features and kernels for classification of texture and object categories: a comprehensive study, Int. J. comput. vision, 73, 2, 213-238, (2007)
[32] Scholkopf, B.; Smola, A.J., Learning with kernels: support vector machines, regularization, optimization, and beyond, (2001), MIT Press Cambridge, MA, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.