Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. (English) Zbl 1181.76015

Summary: Conditionally sampled measurements with particle image velocimetry (PIV) of a turbulent round submerged liquid jet in a laboratory have been taken at \(Re = 2 \times 10^{3}\) between 60 and 100 nozzle diameters from the nozzle in order to investigate the dynamics and transport processes at the continuous and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence the mean outward ‘boundary entrainment’ velocity is derived and shown to be a constant fraction (about 0.07) of the the mean jet velocity on the centreline. Profiles of the conditional mean velocity, mean scalar and momentum flux show that at the interface there are clear discontinuities in the mean axial velocity and mean scalar and a tendency towards a singularity in mean vorticity. These actual or asymptotic discontinuities are consistent with the conditional mean momentum and scalar transport equations integrated across the interface. Measurements of the fluxes of turbulent kinetic energy and enstrophy are consistent with computations by J. Mathew and A. J. Basu [Phys. Fluids 14, 2065–2072 (2002)] in showing that for a jet flow (without forcing) the entrainment process is dominated by small-scale eddying at the highly sheared interface (‘nibbling’), with large-scale engulfing making a small (less than 10%) contribution consistent with concentration measurements showing that the interior of the jet is well mixed. (Turbulent jets differ greatly from the free shear layer in this respect.) To explain the difference between velocity and scalar profiles, their conditional mean gradients are defined in terms of a local eddy viscosity and eddy diffusivity and the momentum and scalar fluxes inside the interface. Since the eddy diffusivity is larger than the eddy viscosity, the scalar profile is flatter inside the interface so that the scalar discontinuity is relatively greater than the mean velocity discontinuity. Theoretical arguments, following J. C. R. Hunt, I. Eames and J. C. Westerweel [in: Proc. of the IUTAM Symp. on Computational Physics and New Perspectives in Turbulence 4, 331–338 (Springer) (2008)], are proposed for how the vortex sheet develops, how the internal structure of the interface layer relates to the inhomogeneous rotational and irrotational motions on each side and why the dominant entrainment process of jets and wakes differs from that of free shear layers.


76-05 Experimental work for problems pertaining to fluid mechanics
76F25 Turbulent transport, mixing
Full Text: DOI


[1] Raffel, Particle Image Velocimetry: A Practical Guide (1998)
[2] DOI: 10.1007/BF00198005
[3] DOI: 10.1016/0017-9310(90)90102-Z
[4] Prandtl, Essentials of Fluid Dynamics (1956)
[5] DOI: 10.1017/S0022112078002025
[6] Pope, Turbulent Flows. (2000) · Zbl 0966.76002
[7] DOI: 10.1063/1.868241 · Zbl 0928.76051
[8] DOI: 10.1017/S0305004100030073
[9] DOI: 10.1017/S002211208600318X · Zbl 0602.76063
[10] DOI: 10.1017/S0022112093000096
[11] DOI: 10.1175/JAS3928.1
[12] DOI: 10.1080/00102209108951708
[13] DOI: 10.1017/S0022112096000651
[14] DOI: 10.1063/1.857527
[15] DOI: 10.1063/1.1480831 · Zbl 1185.76246
[16] DOI: 10.1017/S0022112094003927
[17] DOI: 10.1017/S0022112069000358
[18] DOI: 10.1016/S0169-5983(00)00026-5 · Zbl 1075.76560
[19] DOI: 10.1017/S002211207400190X
[20] DOI: 10.1088/0957-0233/8/12/010
[21] DOI: 10.1007/BF00575338
[22] DOI: 10.1017/S0022112082003401
[23] DOI: 10.1007/s00348-005-0016-6
[24] DOI: 10.1063/1.869626
[25] DOI: 10.1017/S0022112070000629
[26] Westerweel, Exp. Fluids 33 pp 873– (2002)
[27] DOI: 10.1017/S0022112001006759 · Zbl 1156.76397
[28] DOI: 10.1063/1.1686827
[29] DOI: 10.1103/PhysRevLett.95.174501
[30] DOI: 10.1007/s003480050082
[31] DOI: 10.1017/S0022112096008130
[32] DOI: 10.1007/BF00384623
[33] DOI: 10.1007/s003480070002
[34] DOI: 10.1146/annurev.fl.13.010181.001023
[35] DOI: 10.1017/S0022112081002917
[36] DOI: 10.1007/BF00206543
[37] DOI: 10.1023/A:1021711013263 · Zbl 1113.76369
[38] DOI: 10.1103/PhysRevLett.101.094503
[39] DOI: 10.1017/S002211200100430X · Zbl 1013.76002
[40] DOI: 10.1007/s003480000137
[41] DOI: 10.1146/annurev.fl.23.010191.001401
[42] DOI: 10.1007/978-1-4020-6472-2_50 · Zbl 1208.76044
[43] DOI: 10.1146/annurev.fl.27.010195.002345
[44] Walker, J. Phys. 20 pp 217– (1987)
[45] DOI: 10.1017/S002211200600944X · Zbl 1090.76032
[46] DOI: 10.1016/S0169-5983(99)00009-X
[47] DOI: 10.1017/S0022112086001222
[48] Hunt, Trans. Can. Soc. Mech. Engng 11 pp 21– (1987)
[49] Tsinober, An Informal Introduction to Turbulence (2001)
[50] DOI: 10.1017/S0022112008000141 · Zbl 1151.76327
[51] DOI: 10.1007/s10494-007-9078-2
[52] DOI: 10.1063/1.2746037 · Zbl 1182.76327
[53] DOI: 10.1007/978-3-540-30299-5
[54] Hinze, Turbulence (1975)
[55] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[56] DOI: 10.1017/S0022112082001372
[57] DOI: 10.1175/1520-0485(2001)0312.0.CO;2
[58] Gaskin, J. Hydraul. Res. 42 pp 531– (2004)
[59] DOI: 10.1007/s00348-005-0951-2
[60] Fukushima, Laser Techniques for Fluid Mechanics pp 339– (2002)
[61] DOI: 10.1063/1.2912513 · Zbl 1182.76172
[62] DOI: 10.1017/S0022112090001331
[63] DOI: 10.1017/S0022112008003303 · Zbl 1188.76200
[64] DOI: 10.1017/S0022112006004538 · Zbl 1178.76196
[65] DOI: 10.1017/S0022112099007946 · Zbl 0986.76024
[66] DOI: 10.1017/S0022112072000813 · Zbl 0245.76044
[67] DOI: 10.2514/3.9770
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.