×

zbMATH — the first resource for mathematics

Solution of temperature distribution in a radiating fin using homotopy perturbation method. (English) Zbl 1181.80006
Summary: Radiating extended surfaces are widely used to enhance heat transfer between the primary surface and the environment. The present paper applies the homotopy perturbation to obtain analytic approximation of distribution of temperature in heat fin radiating, which is compared with the results obtained by the Adomian decomposition method (ADM). Comparison of the results obtained by the method reveals that the homotopy perturbation method (HPM) is more effective and easy to use.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
80M25 Other numerical methods (thermodynamics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] E. M. Abulwafa, M. A. Abdou, and A. A. Mahmoud, “The solution of nonlinear coagulation problem with mass loss,” Chaos, Solitons & Fractals, vol. 29, no. 2, pp. 313-330, 2006. · Zbl 1101.82018 · doi:10.1016/j.chaos.2005.08.044
[2] A. Aziz and T. Y. Na, Perturbation Methods in Heat Transfer, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere, Washington, DC, USA, 1984.
[3] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[4] M. M. Rahman and T. Siikonen, “An improved simple method on a collocated grid,” Numerical Heat Transfer Part B, vol. 38, no. 2, pp. 177-201, 2000. · doi:10.1080/104077900750034661
[5] A. V. Kuznetsov and K. Vafai, “Comparison between the two- and three-phase models for analysis of porosity formation in aluminum-rich castings,” Numerical Heat Transfer Part A, vol. 29, no. 8, pp. 859-867, 1996. · doi:10.1080/10407789608913824
[6] J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons & Fractals, vol. 26, no. 3, pp. 695-700, 2005. · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[7] J.-H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005. · Zbl 1401.65085
[8] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[9] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[10] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[11] J.-H. He, “Homotopy perturbation method: a new nonlinear analytical technique,” Applied Mathematics and Computation, vol. 135, no. 1, pp. 73-79, 2003. · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[12] J.-H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[13] G. Adomian, “A review of the decomposition method in applied mathematics,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501-544, 1988. · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[14] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental Theories of Physics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994. · Zbl 0802.65122
[15] J. G. Bartas and W. H. Sellers, “Radiation fin effectiveness,” Journal of Heat Transfer, vol. 82C, pp. 73-75, 1960.
[16] J. E. Wilkins, Jr., “Minimizing the mass of thin radiating fins,” Journal of Aerospace Science, vol. 27, pp. 145-146, 1960.
[17] B. V. Karlekar and B. T. Chao, “Mass minimization of radiating trapezoidal fins with negligible base cylinder interaction,” International Journal of Heat and Mass Transfer, vol. 6, no. 1, pp. 33-48, 1963. · doi:10.1016/0017-9310(63)90027-9
[18] R. D. Cockfield, “Structural optimization of a space radiator,” Journal of Spacecraft Rockets, vol. 5, no. 10, pp. 1240-1241, 1968. · doi:10.2514/3.29463
[19] H. Keil, “Optimization of a central-fin space radiator,” Journal of Spacecraft Rockets, vol. 5, no. 4, pp. 463-465, 1968. · doi:10.2514/3.29279
[20] B. T. F. Chung and B. X. Zhang, “Optimization of radiating fin array including mutual irradiations between radiator elements,” Journal of Heat Transfer, vol. 113, no. 4, pp. 814-822, 1991. · doi:10.1115/1.2911208
[21] C. K. Krishnaprakas and K. B. Narayana, “Heat transfer analysis of mutually irradiating fins,” International Journal of Heat and Mass Transfer, vol. 46, no. 5, pp. 761-769, 2003. · Zbl 1024.80501 · doi:10.1016/S0017-9310(02)00356-3
[22] R. J. Naumann, “Optimizing the design of space radiators,” International Journal of Thermophysics, vol. 25, no. 6, pp. 1929-1941, 2004. · doi:10.1007/s10765-004-7747-0
[23] C. H. Chiu and C. K. Chen, “A decomposition method for solving the convective longitudinal fins with variable thermal conductivity,” International Journal of Heat and Mass Transfer, vol. 45, no. 10, pp. 2067-2075, 2002. · Zbl 1011.80011 · doi:10.1016/S0017-9310(01)00286-1
[24] C. H. Chiu and C. K. Chen, “Application of Adomian/s decomposition procedure to the analysis of convective-radiative fins,” Journal of Heat Transfer, vol. 125, no. 2, pp. 312-316, 2003. · doi:10.1115/1.1532012
[25] D. Lesnic and P. J. Heggs, “A decomposition method for power-law fin-type problems,” International Communications in Heat and Mass Transfer, vol. 31, no. 5, pp. 673-682, 2004. · doi:10.1016/S0735-1933(04)00054-5
[26] C. Arslanturk, “Optimum design of space radiators with temperature-dependent thermal conductivity,” Applied Thermal Engineering, vol. 26, no. 11-12, pp. 1149-1157, 2006. · doi:10.1016/j.applthermaleng.2005.10.038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.