×

zbMATH — the first resource for mathematics

Smoothness and stability of the solutions for nonlinear fractional differential equations. (English) Zbl 1182.26009
Summary: The author derives differentiability properties of solutions for nonlinear fractional differential equations, and then sufficient conditions for the local asymptotical stability of nonlinear fractional differential equations are also deduced.

MSC:
26A33 Fractional derivatives and integrals
34A34 Nonlinear ordinary differential equations and systems, general theory
58B10 Differentiability questions for infinite-dimensional manifolds
58K25 Stability theory for manifolds
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[2] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[3] Agrawal, O.P.; Machado, T.J.A.; Sabatier, J., Introduction, Nonlinear dyn., 38, 1-2, (2004)
[4] Allen, J.S.; Kobayashi, M.H.; Coimbra, C.F.M., History effects on the viscous motion of acoustically forced particles, Appl. phys. lett., 88, 214106, (2006)
[5] Audounet, J.; Matignon, D.; Montseny, G., Semi-linear diffusive representations for non-linear fractional differential systems, (), 78-82 · Zbl 1239.93078
[6] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent, II, Geophys. J. roy. astronom. soc., 13, 529-539, (1967)
[7] Deng, W.H., Generalized synchronization in fractional order systems, Phys. rev. E, 75, 056201, (2007)
[8] Matignon, D., Stability results for fractional differential equations with applications to control processing, (), 963-968
[9] Micu, S.; Zuazua, E., On the controllability of a fractional order parabolic equation, SIAM J. control optim., 44, 1950-1972, (2006) · Zbl 1116.93022
[10] Zaslavsky, G.M., Chaos, fractional kinetics, and anomalous transport, Phys. rep., 371, 461-580, (2002) · Zbl 0999.82053
[11] Deng, W.H., Numerical algorithm for the time fractional fokker – planck equation, J. comput. phys., 227, 1510-1522, (2007) · Zbl 1388.35095
[12] Diethelm, K.; Ford, N.J.; Freed, A.D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn., 29, 3-22, (2002) · Zbl 1009.65049
[13] Diethelm, K.; Ford, N.J.; Freed, A.D., Detailed error analysis for a fractional Adams method, Numer. algorithms, 36, 31-52, (2004) · Zbl 1055.65098
[14] Lubich, C., Runge – kutta theory for Volterra and Abel integral equations of the second kind, Math. comput., 41, 87-102, (1983) · Zbl 0538.65091
[15] Lubich, C., Discretized fractional calculus, SIAM J. math. anal., 17, 704-719, (1986) · Zbl 0624.65015
[16] Bonnet, C.; Partington, J.R., Coprime factorizations and stability of fractional differential systems, System control lett., 41, 167-174, (2000) · Zbl 0985.93048
[17] Deng, W.H.; Li, C.P.; Lü, J.H., Stability analysis of linear fractional differential system with multiple time-delays, Nonlinear dyn., 48, 409-416, (2007) · Zbl 1185.34115
[18] Li, C.P.; Deng, W.H., Remarks on fractional derivatives, Appl. math. comput., 187, 777-784, (2007) · Zbl 1125.26009
[19] Diethelm, K.; Ford, N.J., Analysis of fractional differential equations, J. math. anal. appl., 265, 229-248, (2002) · Zbl 1014.34003
[20] Deimling, K., Nonlinear functional analysis, (1985), Springer Berlin · Zbl 0559.47040
[21] Tricomi, F.G., Integral equations, (1957), Interscience New York · Zbl 0078.09404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.