×

Integral bifurcation method combined with computer for solving a higher order wave equation of KdV type. (English) Zbl 1182.65161

Summary: The integral bifurcation method combined with computer methods was used to study a higher order wave equation of Korteweg-de Vries (KdV) type. Under different parameter conditions, many integral bifurcations are obtained. By these integral bifurcations, using the software Maple, we have obtained many exact travelling wave solutions such as periodic soliton solutions and periodic cusp wave solutions, solitary wave solutions, and solitary cusp wave solutions.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

Maple
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/j.nonrwa.2006.10.001 · Zbl 1185.35217
[2] DOI: 10.1016/0167-2789(95)00133-O · Zbl 1194.35363
[3] DOI: 10.1016/j.chaos.2004.02.044 · Zbl 1069.35065
[4] DOI: 10.1016/j.chaos.2005.10.007 · Zbl 1139.35092
[5] DOI: 10.1016/j.physleta.2005.06.070 · Zbl 1194.35112
[6] DOI: 10.1016/S0307-904X(00)00031-7 · Zbl 0985.37072
[7] Li J. B., Math. Biosci. Eng. 3 pp 125– (2006)
[8] DOI: 10.1016/j.chaos.2004.04.027 · Zbl 1069.35075
[9] DOI: 10.1080/00207160601170007 · Zbl 1134.35096
[10] DOI: 10.1016/j.chaos.2005.08.050 · Zbl 1099.35116
[11] DOI: 10.1016/j.chaos.2006.01.096 · Zbl 1137.34304
[12] Rui W., Rostock. Math. Kolloq. 61 pp 56– (2006)
[13] Rui W., Nonlinear Anal. (2007)
[14] DOI: 10.1016/j.chaos.2005.10.008 · Zbl 1138.35403
[15] DOI: 10.1063/1.1514387 · Zbl 1060.35127
[16] DOI: 10.1016/S0960-0779(01)00211-9 · Zbl 1068.76011
[17] DOI: 10.1016/j.chaos.2004.09.044 · Zbl 1092.37054
[18] DOI: 10.1016/j.physleta.2005.03.066 · Zbl 1145.35455
[19] DOI: 10.1016/j.amc.2007.01.042 · Zbl 1124.35072
[20] DOI: 10.1016/j.physleta.2005.10.099 · Zbl 1195.65211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.