×

zbMATH — the first resource for mathematics

Fuzzy sliding mode controller for a flexible single-link robotic manipulator. (English) Zbl 1182.70049
Summary: Two robust non-linear controllers have been developed in this study to control the rigid and flexible motions of a single-link robotic manipulator. The controllers consist of a conventional sliding mode controller (CSMC) and a fuzzy sliding mode controller (FSMC). The effects of fuzzy-tuning some of the CSMC control parameters on the overall performance of the arm have been investigated in this study. Furthermore, the proposed FSMC, whose parameters are determined by fuzzy inference systems, has been designed herein based on two Lyapunov functions. The rationale is to considerably reduce the momentum of the system before entering the boundary layer neighboring the sliding surface. This will significantly attenuate the structural deformations of the arm. The digital simulations have demonstrated that the structural deformations, incurred by the beam at the onset of its movement, can be significantly reduced by fuzzy-tuning some of the control parameters. Furthermore, the results have illustrated the superiority of the FSMC over the CSMC in producing a less oscillatory and more accurate response of the angular displacement at the base joint, in damping out the unwanted vibrations of the beam, and in requiring significantly smaller control torques.

MSC:
70Q05 Control of mechanical systems
74M05 Control, switches and devices (“smart materials”) in solid mechanics
93C42 Fuzzy control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bartoszewicz, A., Automatica 31 (12) pp 1893– (1995) · Zbl 0850.93147 · doi:10.1016/0005-1098(95)00122-1
[2] Book, W. J., ASME Journal of Dynamic Systems, Measurement and Control 97 (4) pp 424– (1975) · doi:10.1115/1.3426959
[3] Chalhoub, N. G., ASME Journal of Dynamic Systems, Measurement and Control 108 (2) pp 119– (1986) · Zbl 0592.93031 · doi:10.1115/1.3143753
[4] Chalhoub, N. G., ASME Journal of Dynamic Systems, Measurement and Control 115 (4) pp 658– (1993) · doi:10.1115/1.2899193
[5] Chen, L., ASME Journal of Dynamic Systems, Measurement and Control 119 (3) pp 421– (1997) · Zbl 0900.93205 · doi:10.1115/1.2801274
[6] Choi, S. B., Mechatronics 7 (2) pp 199– (1997) · doi:10.1016/S0957-4158(96)00045-1
[7] Choi, S. B., Journal of Dynamic Systems, Measurement, and Control 116 pp 154– (1994) · Zbl 0800.93210 · doi:10.1115/1.2900671
[8] Choi, S. B., Automatica 30 (5) pp 899– (1994) · Zbl 0800.93202 · doi:10.1016/0005-1098(94)90180-5
[9] Choi, S. B., Journal of Sound and Vibration 179 (5) pp 737– (1995) · doi:10.1006/jsvi.1995.0049
[10] DeCarlo, R. A., Proceedings of the IEEE 76 (3) pp 212– (1988) · doi:10.1109/5.4400
[11] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (1971) · Zbl 1145.65316
[12] Gokasan, M., IEEE Industrial Electronics Society Conference (IECON 98) pp 1083–
[13] Ha, Q. P., Automatica 35 pp 607– (1999) · Zbl 0979.93524 · doi:10.1016/S0005-1098(98)00169-1
[14] Khalil, H. K., Non-linear Systems, 2. ed. (1996)
[15] Kim, M. H., Journal of Vibration and Control 7 pp 1087– (2001) · Zbl 1102.74313 · doi:10.1177/107754630100700707
[16] Lee, H., Fuzzy Sets and Systems 120 pp 135– (2001) · Zbl 0988.93045 · doi:10.1016/S0165-0114(99)00072-X
[17] Meirovitch, L., Analytical Methods in Vibrations (1967) · Zbl 0166.43803
[18] Qian, W. T., IEEE Transactions on Automatic Control 37 (1) pp 132– (1992)
[19] Simo, J. C., Journal of Sound and Vibration 119 (3) pp 487– (1987) · Zbl 1235.74193 · doi:10.1016/0022-460X(87)90410-X
[20] Singh, S. N., Proceedings of 1985 American Control Conference pp 375–
[21] Slotine, J. J. E., Applied Non-linear Control (1991)
[22] Slotine, J. J., International Journal of Control 38 pp 465– (1983) · Zbl 0519.93036 · doi:10.1080/00207178308933088
[23] Utkin, V. I., IEEE Transactions on Automatic Control 22 (2) pp 212– (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[24] Young, D., ”Tables of characteristic functions representing normal modes of vibration of a beam,” (1949)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.