×

Hilbert functions over toric rings. (English) Zbl 1183.13031

The present paper focuses on the interesting problem of extending important results on Hilbert functions to non-polynomial rings. As prominent examples of these results the authors cite F. S. Macaulay’s theorem [Proceedings L. M. S. (2) 26, 531–555 (1927; JFM 53.0104.01)], Bigatti-Hullet-Pardue’s extensions of it [A. M. Bigatti, Commun. Algebra 21, No. 7, 2317–2334 (1993; Zbl 0817.13007); H. A. Hulett, Commun. Algebra 21, No. 7, 2335–2350 (1993; Zbl 0817.13006); K. Pardue, Ill. J. Math. 40, No. 4, 564–585 (1996; Zbl 0903.13004)] and R. Hartshorne’s result on the connectedness of the Hilbert scheme [Publ. Math., Inst. Hautes Étud. Sci. 29, 5–48 (1966; Zbl 0171.41502)]. Some of these results have been studied in the Clements-Lidström ring and in the particular case \(\mathbf{k}[x_1,\dots,x_n]/(x_1^2,\dots,x_n^2)\). The goal of the paper is to build analogues of these results over projective toric rings.
The first main result of the paper is Theorem 2.5 which states that for every homogeneous ideal \(P\) in a projective toric ring \(R\) there exists a monomial ideal \(M\) in \(R\) with the same Hilbert function and such that the Betti numbers of \(M\) are greater or equal to those of \(P\).
In section 3 of the article the authors give a definition of lex ideal in a projective toric ring. For this definition it is crucial that every initial lex-segment generates an initial lex-segment in the next degree. This fact is proved in Theorem 3.4.
Section 4 discusses several important open problems on the topic of the paper. The first one, Problem 4.1, is to identify projective toric rings for which Macaulay’s theorem holds. The second problem, Problem 4.4, is the generalization of the extremal behaviour of the Betti numbers of lex ideals in the polynomial ring to projective toric rings. Problems 4.7 and 4.9 focus on the structure of minimal free resolutions and the Hilbert scheme respectively.
The paper finishes with the example of rational normal curves, for which the authors prove that Macaulay’s theorem holds (Theorem 5.1) and study the structure of minimal free resolutions over them (Theorems 5.5 and 5.7).

MSC:

13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Aramova, L. Avramov, and J. Herzog, Resolutions of monomial ideals and cohomology over exterior algebras, Trans. Amer. Math. Soc. 352 (2000), 579–594. JSTOR: · Zbl 0930.13011 · doi:10.1090/S0002-9947-99-02298-9
[2] A. Aramova, J. Herzog, and T. Hibi, Squarefree lexsegment ideals, Math. Z. 228 (1998), 353–378. · Zbl 0914.13007 · doi:10.1007/PL00004621
[3] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard Univ., 1982. · Zbl 0482.10021
[4] A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), 2317–2334. · Zbl 0817.13007 · doi:10.1080/00927879308824679
[5] W. Bruns and J. Herzog, Semigroup rings and simplicial complexes, J. Pure Appl. Algebra 122 (1997), 185–208. · Zbl 0884.13006 · doi:10.1016/S0022-4049(97)00051-0
[6] D. Eisenbud, Commutative algebra. With a view towards algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995. · Zbl 0819.13001
[7] C. Francisco and B. Richert, Lex-plus-powers ideals, Lect. Notes Pure Appl. Math., 254, pp. 113–144, Chapman & Hall/CRC, Boca Raton, FL, 2007. · Zbl 1125.13008
[8] V. Gasharov, T. Hibi, and I. Peeva, Resolutions of \(\mathbf a\) -stable ideals, J. Algebra 254 (2002), 375–394. · Zbl 1089.13508 · doi:10.1016/S0021-8693(02)00083-2
[9] V. Gasharov and I. Peeva, Hilbert schemes and maximal Betti numbers over Veronese rings (submitted). · Zbl 1210.14010 · doi:10.1007/s00209-009-0614-8
[10] V. Gasharov, I. Peeva, and V. Welker, Rationality for generic toric rings, Math. Z. 233 (2000), 93–102. · Zbl 0958.13004 · doi:10.1007/PL00004794
[11] D. Grayson and M. Stillman, Macaulay 2: A system for computation in algebraic geometry and commutative algebra, \(\langle \)http://www.math.uiuc.edu/Macaulay2/\(\rangle .\)
[12] R. Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 5–48. · Zbl 0171.41502
[13] H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), 2335–2350. · Zbl 0817.13006 · doi:10.1080/00927879308824680
[14] G. Katona, A theorem for finite sets, Theory of graphs (P. Erdös, G. Katona, eds.), pp. 187–207, Academic Press, New York, 1968. · Zbl 0313.05003
[15] J. Kruskal, The number of simplices in a complex, Mathematical optimization techniques (R. Bellman, ed.), pp. 251–278, Univ. of California Press, Berkeley, 1963. · Zbl 0116.35102
[16] F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. (2) 26 (1927), 531–555. · JFM 53.0104.01
[17] J. Mermin and I. Peeva, Hilbert functions and lex ideals, J. Algebra 313 (2007), 642–656. · Zbl 1194.13018 · doi:10.1016/j.jalgebra.2007.03.036
[18] J. Mermin, I. Peeva, and M. Stillman, Ideals containing the squares of the variables, Adv. Math. (to appear). · Zbl 1141.13016 · doi:10.1016/j.aim.2007.11.014
[19] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005. · Zbl 1090.13001
[20] K. Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), 564–585. · Zbl 0903.13004
[21] I. Peeva and M. Stillman, Connectedness of Hilbert schemes, J. Algebraic Geom. 14 (2005), 193–211. · Zbl 1078.14007 · doi:10.1090/S1056-3911-04-00386-8
[22] ——, Flips and the Hilbert scheme over an exterior algebra, Math. Ann. 339 (2007), 545–557. · Zbl 1128.14006 · doi:10.1007/s00208-007-0122-2
[23] J.-E. Roos and B. Sturmfels, A toric ring with irrational Poincaré–Betti series, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 141–146. · Zbl 0934.14033 · doi:10.1016/S0764-4442(97)89459-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.