×

zbMATH — the first resource for mathematics

Regular and chaotic dynamics of the Lorenz-Stenflo system. (English) Zbl 1183.34065

MSC:
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.physleta.2008.05.036 · Zbl 1221.37233 · doi:10.1016/j.physleta.2008.05.036
[2] DOI: 10.1142/S0218127409023676 · doi:10.1142/S0218127409023676
[3] DOI: 10.1238/Physica.Regular.063a00177 · Zbl 1115.37366 · doi:10.1238/Physica.Regular.063a00177
[4] DOI: 10.1103/PhysRevLett.95.143905 · doi:10.1103/PhysRevLett.95.143905
[5] DOI: 10.1103/PhysRevE.75.055204 · doi:10.1103/PhysRevE.75.055204
[6] DOI: 10.1103/PhysRevLett.70.2714 · doi:10.1103/PhysRevLett.70.2714
[7] Gantmacher F. R., Theory of Matrices 1 (1989) · Zbl 0085.01001
[8] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[9] Ott E., Chaos in Dynamical Systems (2000) · Zbl 0792.58014
[10] DOI: 10.1088/0031-8949/53/1/015 · doi:10.1088/0031-8949/53/1/015
[11] DOI: 10.1088/0031-8949/54/2/003 · Zbl 0947.37023 · doi:10.1088/0031-8949/54/2/003
[12] DOI: 10.1088/0031-8949/54/4/001 · Zbl 1063.37532 · doi:10.1088/0031-8949/54/4/001
[13] Yu M. Y., Phys. Scr. T 82 pp 10–
[14] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003) · Zbl 1027.37002
[15] DOI: 10.1063/1.531938 · Zbl 0897.76038 · doi:10.1063/1.531938
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.