×

zbMATH — the first resource for mathematics

On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. (English) Zbl 1183.46070
From the abstract: J. A. Fridy and C. Orhan [Pac. J. Math. 160, No. 1, 43–51 (1993; Zbl 0794.60012)] introduced the idea of lacunary statistical convergence. Quite recently, the concept of statistical convergence of double sequences has been studied in intuitionistic fuzzy normed space by the authors [Chaos Solitons Fractals 41, No. 5, 2414–2421 (2009; doi:10.1016/j.chaos.2008.09.018)]. In this paper, we study lacunary statistical convergence in intuitionistic fuzzy normed spaces. We also introduce here a new concept, that is, statistical completeness, and show that IFNS is statistically complete but not complete.

MSC:
46S40 Fuzzy functional analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zadeh, L.A., Fuzzy sets, Inform. control, 8, 338-353, (1965) · Zbl 0139.24606
[2] Barros, L.C.; Bassanezi, R.C.; Tonelli, P.A., Fuzzy modelling in population dynamics, Ecol. model., 128, 27-33, (2000)
[3] Fradkov, A.L.; Evans, R.J., Control of chaos: methods and applications in engineering, Chaos solitons fractals, 29, 33-56, (2005)
[4] Giles, R., A computer program for fuzzy reasoning, Fuzzy sets and system, 4, 221-234, (1980) · Zbl 0445.03007
[5] Hong, L.; Sun, J.Q., Bifurcations of fuzzy nonlinear dynamical systems, Commun. nonlinear sci. numer. simul., 1, 1-12, (2006) · Zbl 1078.37049
[6] Madore, J., Fuzzy physics, Ann. phys., 219, 187-198, (1992)
[7] Saadati, R.; Mansour Vaezpour, S.; Cho, Yeol J., Quicksort algorithm: application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words, J. comput. appl. math., 228, 1, 219-225, (2009) · Zbl 1189.68040
[8] Park, J.H., Intuitionistic fuzzy metric spaces, Chaos solitons fractals, 22, 1039-1046, (2004) · Zbl 1060.54010
[9] Saadati, R.; Park, J.H., On the intuitionistic fuzzy topological spaces, Chaos solitons fractals, 27, 331-344, (2006) · Zbl 1083.54514
[10] Karakus, S.; Demirci, K.; Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos solitons fractals, 35, 763-769, (2008) · Zbl 1139.54006
[11] Mursaleen, M.; Mohiuddine, S.A., Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, Chaos solitons fractals, (2008) · Zbl 1198.40007
[12] Fang, J.X., A note on the completions of fuzzy metric spaces and fuzzy normed spaces, Fuzzy sets and systems, 131, 399-407, (2002) · Zbl 1012.54006
[13] Felbin, C., Finite dimensional fuzzy normed linear space, Fuzzy sets and systems, 48, 239-248, (1992) · Zbl 0770.46038
[14] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 313-334, (1960) · Zbl 0091.29801
[15] Fast, H., Sur la convergence statistique, Colloq. math., 2, 241-244, (1951) · Zbl 0044.33605
[16] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313, (1985) · Zbl 0588.40001
[17] Aytar, S., Statistical limit points of sequences of fuzzy numbers, Inform. sci., 165, 129-138, (2004) · Zbl 1330.62268
[18] Savaş, E.; Mursaleen, M., On statistically convergent double sequences of fuzzy numbers, Inform. sci., 162, 183-192, (2004) · Zbl 1057.40002
[19] Mursaleen; Edely, Osama H.H., Statistical convergence of double sequences, J. math. anal. appl., 288, 223-231, (2003) · Zbl 1032.40001
[20] Fridy, J.A.; Orhan, C., Lacunary statistical convergence, Pacific J. math., 160, 43-51, (1993) · Zbl 0794.60012
[21] Fridy, J.A., Lacunary statistical summability, J. math. anal. appl., 173, 497-504, (1993) · Zbl 0786.40004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.