×

zbMATH — the first resource for mathematics

Schemes for finding minimum-norm solutions of variational inequalities. (English) Zbl 1183.49012
Summary: Consider the Variational Inequality (VI) of finding a point \(x^*\) such that
\[ x^*\in\text{Fix}(T)\text{ and }\langle(I-S)x^*,x-x^*\rangle\geq 0,\quad x\in \text{Fix}(T)\tag{*} \]
where \(T,S\) are nonexpansive self-mappings of a closed convex subset \(C\) of a Hilbert space, and \(\text{Fix}(T)\) is the set of fixed points of \(T\). Assume that the solution set \(\Omega\) of this VI is nonempty. This paper introduces two schemes, one implicit and one explicit, that can be used to find the minimum-norm solution of VI \((*)\); namely, the unique solution \(x^*\) to the quadratic minimization problem: \(x^*=\text{argmin}_{x\in \Omega}\|x\|^2\).

MSC:
49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yamada, I., The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, (), 473-504 · Zbl 1013.49005
[2] Yamada, I.; Ogura, N., Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. funct. anal. optim., 25, 619-655, (2004) · Zbl 1095.47049
[3] Yamada, I.; Ogura, N.; Shirakawa, N., A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, (), 269-305 · Zbl 1039.47051
[4] Mainge, P.-E.; Moudafi, A., Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific J. optim., 3, 3, 529-538, (2007) · Zbl 1158.47057
[5] Lu, X.; Xu, H.K.; Yin, X., Hybrid methods for a class of monotone variational inequalities, Nonlinear anal., (2008)
[6] Chen, R.; Fu, S.; Xu, H.K., Regularization and iteration methods for a class of monotone variational inequalities, Taiwanese J. math., 13, 2B, 739-752, (2009) · Zbl 1179.58008
[7] Cianciaruso, F.; Colao, V.; Muglia, L.; Xu, H.K., On an implicit hierarchical fixed point approach to variational inequalities, Bull. austral. math. soc., 80, 1, 117-124, (2009) · Zbl 1168.49005
[8] Moudafi, A.; Mainge, P.-E., Towards viscosity approximations of hierarchical fixed-point problems, Fixed point theory appl., 1-10, (2006), Article ID 95453 · Zbl 1143.47305
[9] G. Marino, H.K. Xu, Explicit hierarchical fixed Point approach to variational inequalities (preprint) · Zbl 1221.49012
[10] H.K. Xu, Viscosity method for hierarchical fixed point approach to variational inequalities, Taiwanese J. Math. 14 (2) (2010) (in press) · Zbl 1215.47099
[11] Cabot, A., Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization, SIAM J. optim., 15, 555-572, (2005) · Zbl 1079.90098
[12] Moudafi, A., Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse problems, 23, 1635-1640, (2007) · Zbl 1128.47060
[13] Xu, H.K.; Kim, T.H., Convergence of hybrid steepest-descent methods for variational inequalities, J. optim. theory appl., 119, 185-201, (2003) · Zbl 1045.49018
[14] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 240-256, (2002) · Zbl 1013.47032
[15] Xu, H.K., An iterative approach to quadratic optimization, J. optim. theory appl., 116, 659-678, (2003) · Zbl 1043.90063
[16] Xu, H.K., Viscosity approximation methods for nonexpansive mappings, J. math. anal. appl., 298, 279-291, (2004) · Zbl 1061.47060
[17] Xu, H.K., A variable krasnoselski-Mann algorithm and the multiple-set split feasibility problem, Inverse problems, 22, 2021-2034, (2006) · Zbl 1126.47057
[18] Yao, Y.; Liou, Y.-C., Weak and strong convergence of krasnoselski-Mann iteration for hierarchical fixed point problems, Inverse problems, 24, 1, 015015, (2008), 8 pp · Zbl 1154.47055
[19] Geobel, K.; Kirk, W.A., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.