×

Computations of signatures of coherent systems with five components. (English) Zbl 1183.62178

Summary: The signatures of coherent systems are useful tools to compute the system reliability functions, the system expected lifetimes and to compare different systems using stochastic orderings. It is well known that there exist 2, 5, and 20 different coherent systems with 2, 3, and 4 components, respectively. The signatures for these systems were given by M. Shaked and A. Suarez-Llorens [J. Am. Stat. Assoc. 98, No. 463, 693–702 (2003; Zbl 1040.62093)]. We obtain an algorithm to compute all the coherent systems with \(n\) components and their signatures. Using this algorithm we show that there exist 180 coherent systems with 5 components and we compute their signatures.

MSC:

62N05 Reliability and life testing
65C60 Computational problems in statistics (MSC2010)
60E15 Inequalities; stochastic orderings
62Q05 Statistical tables

Citations:

Zbl 1040.62093
PDF BibTeX XML Cite
Full Text: DOI HAL

References:

[1] DOI: 10.1016/j.spl.2007.09.054 · Zbl 1141.62081
[2] Barlow R. E., Statistical Theory of Reliability and Life Testing (1975) · Zbl 0379.62080
[3] DOI: 10.1016/j.spl.2007.09.052 · Zbl 1184.62174
[4] DOI: 10.1002/0471722162 · Zbl 1053.62060
[5] DOI: 10.1080/03610910701678969 · Zbl 1159.90345
[6] DOI: 10.1002/(SICI)1520-6750(199908)46:5<507::AID-NAV4>3.0.CO;2-D · Zbl 0948.90067
[7] DOI: 10.1002/asmb.715 · Zbl 1198.62147
[8] DOI: 10.1239/jap/1152413730 · Zbl 1111.62098
[9] DOI: 10.1239/jap/1175267165 · Zbl 1135.62084
[10] DOI: 10.1016/j.jmva.2005.09.003 · Zbl 1102.62111
[11] DOI: 10.1007/s00184-007-0133-8 · Zbl 1357.62304
[12] DOI: 10.1016/j.spl.2004.12.017 · Zbl 1068.60026
[13] DOI: 10.1080/03610920600966316 · Zbl 1121.60015
[14] DOI: 10.1080/03610920601076958 · Zbl 1137.62026
[15] DOI: 10.1239/jap/1231340236 · Zbl 1155.60305
[16] DOI: 10.1002/nav.20285 · Zbl 1153.90386
[17] DOI: 10.1109/TR.1985.5221935 · Zbl 0585.62169
[18] DOI: 10.1007/978-0-387-71797-5
[19] DOI: 10.1002/nav.20370 · Zbl 1182.90036
[20] DOI: 10.1198/016214503000000602 · Zbl 1040.62093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.