×

Distance regression by Gauss-Newton-type methods and iteratively re-weighted least-squares. (English) Zbl 1183.65014

A generalized problem of fitting a curve or surface to given measurement data is presented. The solution is focused on the situations when the usual least-squares approach is not suitable. The generalization of the fitting problem lies in minimizing the sum of the so called norm-like functions applied to the residual vectors that connect the measured points with associated points on the fitted curve or surface. This approach represents an extension of the iteratively re-weighted least-squares method (Gauss-Newton-type method) for minimizing a sum of norm-like functions of scalar residuals. The obtained results can be used in various applications of computational geometry – reconstruction of geometric models from point cloud data, regression analysis, image segmentation, pattern recognition, etc.

MSC:

65D10 Numerical smoothing, curve fitting
65F20 Numerical solutions to overdetermined systems, pseudoinverses
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
62J05 Linear regression; mixed models
65C60 Computational problems in statistics (MSC2010)
68T10 Pattern recognition, speech recognition

Software:

KELLEY
Full Text: DOI

References:

[1] Aigner M, Jüttler B (2007) Approximation flows in shape manifolds. In: Chenin P, Lyche T, Schumaker L (eds) Curve and surface design: Avignon 2006, Nashboro Press, pp 1–10
[2] Aigner M, Šír Z, Jüttler B (2007) Evolution-based least-squares fitting using Pythagorean hodograph spline curves. Comput Aided Geom Des 24: 310–322 · Zbl 1171.65315 · doi:10.1016/j.cagd.2007.04.001
[3] Al-Subaihi I, Watson GA (2004) The use of the l 1 and l norms in fitting parametric curves and surfaces to data. Appl Numer Anal Comput Math 1: 363–376 · Zbl 1071.65012 · doi:10.1002/anac.200410004
[4] Alhanaty M, Bercovier M (2001) Curve and surface fitting and design by optimal control methods. Comput Aided Des 33: 167–182 · Zbl 1206.65043 · doi:10.1016/S0010-4485(00)00089-0
[5] Atieg A, Watson GA (2003) A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances. J Comput Appl Math 158: 277–296 · Zbl 1034.65007 · doi:10.1016/S0377-0427(03)00448-5
[6] Blake A, Isard M (1998) Active contours. Springer, New York
[7] Boggs PT, Byrd RH, Schnabel RB (1987) A stable and efficient algorithm for nonlinear orthogonal distance regression. J Sci Stat Comput 8(6): 1052–1078 · Zbl 0637.65150 · doi:10.1137/0908085
[8] Bube KP, Langan RT (1997) Hybrid 1/ 2 minimization with application to tomography. Geophysics 62: 1183–1195 · doi:10.1190/1.1444219
[9] Holland P, Welsch R (1977) Robust regression using iteratively re-weighted least-squares. Commun Stat Theory Methods 9(A6): 813–827 · Zbl 0376.62035
[10] Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. A K Peters, Wellesley · Zbl 0788.68002
[11] Huber PJ (1981) Robust statistics. Wiley, New York · Zbl 0536.62025
[12] Jüttler B (1998) Computational methods for parametric discrete 1 and curve fitting. Int J Shape Model 4: 21–34 · Zbl 0963.68208 · doi:10.1142/S0218654398000039
[13] Kelley CT (1999) Iterative methods for optimization. Society for Industrial and Applied Mathematics, Philadelphia · Zbl 0934.90082
[14] Liu Y, Wang W (2008) A revisit to least squares orthogonal distance fitting of parametric curves and surfaces. In: Chen F, Jüttler B (eds) Advances in geometric modeling and processing, GMP 2008, Springer, pp 384–397
[15] Mahadevan V, Narasimha-Iyer H, Roysam B, Tanenbaum HL (2004) Robust model-based vasculature detection in noisy biomedical images. IEEE Trans Inf Technol Biomed 8(3): 360–376 · doi:10.1109/TITB.2004.834410
[16] McCullagh P, Nelder J (1998) Generalized linear models. Chapman & Hall, London · Zbl 0588.62104
[17] Osborne MR (1985) Finite algorithms in optimization and data analysis. Wiley, New York · Zbl 0573.65044
[18] Pottmann H, Leopoldseder S, Hofer M, Steiner T, Wang W (2005) Industrial geometry: recent advances and applications in CAD. Comput Aided Des 37: 751–766 · doi:10.1016/j.cad.2004.08.013
[19] Rogers D, Fog N (1989) Constrained B-spline curve and surface fitting. Comput Aided Des 21: 641–648 · Zbl 0687.65008 · doi:10.1016/0010-4485(89)90162-0
[20] Sarkar B, Menq CH (1991) Parameter optimization in approximating curves and surfaces to measurement data. Comput Aided Geom Des 8: 267–280 · Zbl 0746.65016 · doi:10.1016/0167-8396(91)90016-5
[21] Speer T, Kuppe M, Hoschek J (1998) Global reparametrization for curve approximation. Comput Aided Geom Des 15: 869–877 · Zbl 0910.68214 · doi:10.1016/S0167-8396(98)00024-7
[22] Wang W, Pottmann H, Liu Y (2006) Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans Graph 25(2): 214–238 · doi:10.1145/1138450.1138453
[23] Watson GA (2000) Approximation in normed linear spaces. J Comput Appl Math 121: 1–36 · Zbl 0964.41020 · doi:10.1016/S0377-0427(00)00333-2
[24] Watson GA (2001) On the Gauss–Newton method for 1 orthogonal distance regression. IMA J Num Anal 22: 345–357 · Zbl 1017.65004 · doi:10.1093/imanum/22.3.345
[25] Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss– Newton method. Biometrika 61(3): 439–447 · Zbl 0292.62050
[26] Yamamoto T (2000) Historical developments in convergence analysis for Newton’s and Newton-like methods. J Comput Appl Math 124(1/2): 1–23 · Zbl 0965.65079 · doi:10.1016/S0377-0427(00)00417-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.